Energy is released when an electron transitions from one energy level to another. In contrast, the same amount of energy is needed to carry out the process, the other way around, from the bottom elevation to the upper one.
What occurs when an electron transitions from one energy level to another?
- The energy of the electron drops when it changes levels, and the atom releases photons. The electron emits a photon when it transitions from a greater to a lower energy level. The energy emitted is precisely the energy that is lost when an electron moves to a level with less energy.
- An atom's electrons have negative energy. The electron must be given energy in order to be removed from the hydrogen atom, as shown by the negative sign. The quantity of energy in the atom will rise by supplying the electron with energy. Similar to how a ball on Earth chooses to rest in valleys rather than hills, the electron wants to spend the majority of its time at a lower energy level.
- For a brief period of time, the electron remains in an excited state. The energy required to bring the electron to its lower-energy state will be released when the electron transitions between excited and unexcited states.
Learn more about electrons here:
brainly.com/question/1255220
#SPJ4
The answer would be decomposers
Answer : Hydrogen-bonding, Dipole-dipole attraction and London-dispersion force.
Explanation :
The given molecule is .
Three types of inter-molecular forces are present in this molecule which are Hydrogen-bonding, Dipole-dipole attraction and London-dispersion force.
- Hydrogen-bonding : when the partial positive end of hydrogen is bonded with the partial negative end of another molecule like, oxygen, nitrogen, etc.
- Dipole-dipole attraction : When the partial positively charged part of the molecule is interact with the partial negatively charged part of the molecule. For example : In case of HCl.
- London-dispersion force : This force is present in all type of molecule whether it is a polar or non-polar, ionic or covalent. For example : In case of Br-Br , F-F, etc
Hydrogen-bonding is present between the oxygen and hydrogen molecule.
Dipole-dipole forces is present between the carbon and oxygen molecule.
London-dispersion forces is present between the carbon and carbon molecule.
A. is the answer i hope this helps