Answer:
C
Explanation:
Temperature is directly related to kinetic energy (KE). As we raise temperature, we are raising KE, as well. Particles with more KE move more quickly and with more force.
This means that these particles are more likely to collide with each other and react to allow the chemical reaction to follow through. In turn, if the chemical reaction is more likely to go to completion, the reaction rate increases, eliminating A and B.
The concentration of the solute is not affected by the temperature; in other words, temperature will not increase or decrease the amount of solute in the solution, so eliminate D.
Thus the answer is C.
Hope this helps!
You must use 1880 mL of O₂ to react with 4.03 g Mg.
A_r: 24.305
2Mg + O₂ ⟶ 2MgO
<em>Moles of Mg</em> = 4.03 g Mg × (1 mol Mg/24.305 g Mg) = 0.1658 mol Mg
<em>Moles of O₂</em> = 0.1658 mol Mg × (1 mol O₂/2 mol Mg) = 0.082 90 mol O₂
STP is 25 °C and 1 bar. At STP, 1 mol of an ideal gas has a volume of <em>22.71 L</em>.
<em>Volume of O₂</em> = 0.082 90 mol O₂ × (22.71 L O₂/1 mol O₂) = 1.88 L = 1880 mL
Answer:
Mass: 981.0 g
Density: 5.61 g/cm^3
Hardness: = 2.5 - 3
Unknown material: Chalcocite
Explanation:
Answer : The fraction of carbonic acid present in the blood is 5.95%
Explanation :
The mixture consists of carbonic acid ( H₂CO₃) and bicarbonate ion ( HCO₃⁻). This represents a mixture of weak acid and its conjugate which is a buffer.
The pH of a buffer is calculated using Henderson equation which is given below.
![pH = pKa + log \frac{[Base]}{[Acid]}](https://tex.z-dn.net/?f=pH%20%3D%20pKa%20%2B%20log%20%5Cfrac%7B%5BBase%5D%7D%7B%5BAcid%5D%7D)
We have been given,
pH = 7.5
pKa of carbonic acid = 6.3
Let us plug in the values in Henderson equation to find the ratio Base/Acid.
![7.5 = 6.3 + log \frac{[base]}{[acid]}](https://tex.z-dn.net/?f=7.5%20%3D%206.3%20%2B%20log%20%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D)
![1.2 = log \frac{[base]}{[acid]}](https://tex.z-dn.net/?f=1.2%20%3D%20log%20%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D)
![\frac{[Base]}{[Acid]} = 10^{1.2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BBase%5D%7D%7B%5BAcid%5D%7D%20%3D%2010%5E%7B1.2%7D)
![\frac{[Base]}{[Acid]} = 15.8](https://tex.z-dn.net/?f=%5Cfrac%7B%5BBase%5D%7D%7B%5BAcid%5D%7D%20%3D%2015.8)
![[Base] = 15.8 \times [Acid]](https://tex.z-dn.net/?f=%5BBase%5D%20%3D%2015.8%20%5Ctimes%20%5BAcid%5D)
The total of mole fraction of acid and base is 1. Therefore we have,
![[Acid] + [Base] = 1](https://tex.z-dn.net/?f=%5BAcid%5D%20%2B%20%5BBase%5D%20%3D%201)
But Base = 15.8 x [Acid]. Let us plug in this value in above equation.
![[Acid] + 15.8 \times [Acid] = 1](https://tex.z-dn.net/?f=%5BAcid%5D%20%2B%2015.8%20%5Ctimes%20%5BAcid%5D%20%3D%201)
![16.8 [Acid] = 1](https://tex.z-dn.net/?f=16.8%20%5BAcid%5D%20%3D%201)
![[Acid] = \frac{1}{16.8}](https://tex.z-dn.net/?f=%5BAcid%5D%20%3D%20%5Cfrac%7B1%7D%7B16.8%7D)
![[Acid] = 0.0595](https://tex.z-dn.net/?f=%5BAcid%5D%20%3D%200.0595)
[Acid] = 0.0595 x 100 = 5.95 %
The fraction of carbonic acid present in the blood is 5.95%