<u>Answer:</u>
<u>For A:</u> The equation is 
<u>For B:</u> The equation is 
<u>For C:</u> The equation is 
<u>Explanation:</u>
Alpha decay process is the process in which nucleus of an atom disintegrates into two particles. The first one which is the alpha particle consists of two protons and two neutrons. This is also known as helium nucleus. The second particle is the daughter nuclei which is the original nucleus minus the alpha particle released.

Beta decay process is defined as the process the neutrons get converted into an electron and a proton. The released electron is known as the beta particle. In this process, the atomic number of the daughter nuclei gets increased by a factor of 1 but the mass number remains the same.

<u>For A:</u> Uranium-238 emits an alpha particle
The nuclear equation for this process follows:

<u>For B:</u> Plutonium-239 emits an alpha particle
The nuclear equation for this process follows:

<u>For C:</u> Thorium-239 emits a beta particle
The nuclear equation for this process follows:

Answer:
The pressure law states that for a constant volume of gas in a sealed container the temperature of the gas is directly proportional to its pressure. ... This means that they have more collisions with each other and the sides of the container and hence the pressure is increased.
<span>. increase distance , increase force.</span>
Answer: The activation energy Ea for this reaction is 22689.8 J/mol
Explanation:
According to Arrhenius equation with change in temperature, the formula is as follows.
![ln \frac{k_{2}}{k_{1}} = \frac{-E_{a}}{R}[\frac{1}{T_{2}} - \frac{1}{T_{1}}]](https://tex.z-dn.net/?f=ln%20%5Cfrac%7Bk_%7B2%7D%7D%7Bk_%7B1%7D%7D%20%3D%20%5Cfrac%7B-E_%7Ba%7D%7D%7BR%7D%5B%5Cfrac%7B1%7D%7BT_%7B2%7D%7D%20-%20%5Cfrac%7B1%7D%7BT_%7B1%7D%7D%5D)
= rate constant at temperature
= 
= rate constant at temperature
=
= activation energy = ?
R= gas constant = 8.314 J/kmol
= temperature = 
= temperature = 
Putting in the values ::
![ln \frac{4.8\times 10^8}{2.3\times 10^8} = \frac{-E_{a}}{8.314}[\frac{1}{649} - \frac{1}{553}]](https://tex.z-dn.net/?f=ln%20%5Cfrac%7B4.8%5Ctimes%2010%5E8%7D%7B2.3%5Ctimes%2010%5E8%7D%20%3D%20%5Cfrac%7B-E_%7Ba%7D%7D%7B8.314%7D%5B%5Cfrac%7B1%7D%7B649%7D%20-%20%5Cfrac%7B1%7D%7B553%7D%5D)

The activation energy Ea for this reaction is 22689.8 J/mol