Fe because oxidation mean loss of oxygen and Fe lose the oxygen so Fe is oxidised
The answer is B.Let it sit
The answer would be letter C - solution.
A mixture should be homogeneous for a light not to be scattered. This is because particles are distributed evenly throughout the mixture which allows light to pass directly. In your choices, the solution allows a beam of light to pass through a liquid in a test tube without scattering.
Answer : (C) Hafnium is the most likely identity of the given substance.
Solution : Given,
Mass of given substance (m) = 46.9 g
Volume of given substance (V) = 3.5 
First, find the Density of given substance.
Formula used :

Now,put all the values in this formula, we get
= 13.4 g/
So, we conclude that the density of given substance (13.4 g/
) is approximately equal to the density of Mercury and Hafnium (13.53 and 13.31 g/
respectively).
According to the question the substance is solid at room temperature but Mercury is liquid at room temperature. So, Mercury is not identical to the given substance.
Another element i.e, Hafnium is the element whose density is approximately equal to the given substance and also solid at room temperature. And we know that the melting point of solid is high.
So, Hafnium is the most likely element which is the identity of the given substance.
Answer:
A
Explanation:
Increasing the the temperature would favour the endothermic reaction which is the forward direction however increasing the pressure would make the reaction try to counteract this change by favouring the reaction that would create more products so the equilibrium will shift left instead of right.
Hope this helps.