I think it's Letter c.13 if I'm not mistaken
Answer:
Determine how many moles of CO2 are required to produce 11.0 mol of glucose,
i need points thanks for CO2moles
<span>PbO
Let's look at each of the 4 compounds and see what's needed.
PbO.
* Oxygen has a valance shell that's missing 2 electrons and wants to get those 2 elections. Lead donates them, so you have a Lead (II) ions. This is a correct choice.
PbCl4
* Chlorine wants to grab 1 electron to fill it's valance shell and Lead donates that election. However, there's 4 chlorine atoms and every one of them wants and electron, and lead is donating all 4 of the desired electrons making the Lead (IV) ion. So this is a bad choice.
Pb2O
* Oxygen still wants 2 electrons and gets them from the lead. But there's 2 lead atoms and each of them donates 1 election making for 2 Lead(I) ions. So this too is a bad choice.
Pb2S
* Sulfur is in the same column of the periodic table as oxygen and if this compound were to exist would have similar properties as Pb2O and would have Lead(I) ions. So this is a bad choice.</span>
Answer:
Rubidium-85=61.2
Rubidium-87=24.36
Atomic Mass=85.56 amu
Explanation:
To find the atomic mass, we must multiply the masses of the isotope by the percent abundance, then add.
<u>Rubidium-85 </u>
This isotope has an abundance of 72%.
Convert 72% to a decimal. Divide by 100 or move the decimal two places to the left.
- 72/100= 0.72 or 72.0 --> 7.2 ---> 0.72
Multiply the mass of the isotope, which is 85, by the abundance as a decimal.
- mass * decimal abundance= 85* 0.72= 61.2
Rubidium-85=61.2
<u>Rubidium-87</u>
This isotope has an abundance of 28%.
Convert 28% to a decimal. Divide by 100 or move the decimal two places to the left.
- 28/100= 0.28 or 28.0 --> 2.8 ---> 0.28
Multiply the mass of the isotope, which is 87, by the abundance as a decimal.
- mass * decimal abundance= 87* 0.28= 24.36
Rubidium-87=24.36
<u>Atomic Mass of Rubidium:</u>
Add the two numbers together.
- Rb-85 (61.2) and Rb-87 (24.36)