Answer:
50J
Explanation:
At the top you have(A)
KE_a = O
PE_a = 100J
KE + PE = 100J
At the bottom you have (C)
KE_c= 100J
PE_c=0J
KE+PE = 100J
At point C:
You are at half the height.
We know that at H, PE =100J
PE_c = mgH
At C,
PE_c= mg (H/2) *at half the height
*m and g stay the same
Intuitively, the higher you are, the more potential energy you have.
If you decrease the height by a half, your PE will also decrease
At A:
PE_a / (mg) = H
At B:
PE_b / (mg) = H/2
to also get H on the right hand side, multiply by 2
2 (PE_b/ (mg))= H
2PE_b / (mg) = H
Ok, now that we have set up 2 equations (where H is isolated), find PE at B
AT A = AT B *This way you are saying that H = H (you compare both equations)
PE_a / (mg) = 2x PE_b / (mg)
*mg are the same for both cancel them (you can do that because of the = sign)
PE_a = 2PE_b
We know that PE_a = 100J
100J/2 = PE_b
PE at b = 50J
**FIND KE at b
We know that
KE_b + PE_b is always 100J
100J = 50J + KE_b
KE_b = 50J
Answer:
The toy car
Explanation:
the real car is parked so yeah but maybe in some way technically the real car has more "momentum"
Write an equation to calculate the force between two objects if the product of their charges is 10.0 × 10-4 C. (Note: Use the variable R for the distance between the charges.)
F = 900 ÷_________
If the mass of the object and the volume of the object is determined;
Then, the density of the object is determined by taking the ratio of the mass and volume.
<h3>What is density of an object?</h3>
The density of an object is the ratio of the mass and volume of that object.
Mathematically;
To determine the density of an object therefore, the physical characteristics of mass and the volume of the object are measured.
The mass of the object is obtained using a scale or a balance.
The volume of the object if a solid is obtained using a displacement bottle. If it is a liquid, a measuring cylinder is used.
The density of the object is then obtained by taking the ratio of the mass and the volume of the object.
In conclusion, the density of an object is determined from the volume and mass ratio.
Learn more about density at: brainly.com/question/1354972
#SPJ1
<u>In modern physics</u>, as it was called "Stefan-Boltzmann law", the total energy radiated per unit surface area of a black body is directly proportional to the fourth power of the black body's temperature T
as:

where: P is the power (total energy radiated per second per square meter) and T is the temperature of a black body.
then we can make a ratio between the state of before quadruple (with subscript 1) and after (with subscript 2) as:

As

Then

then

- The factor will the total energy radiated per second per square meter increase = 256