The amount of electric charge that resides on each capacitor once it is fully charged is 0.37 C.
<h3>
Total capacitance of the circuit</h3>
The total capacitance of the circuit is calculated as follows;
Capacitors in series;
1/Ct = 1/8 + 1/7.5
1/Ct = 0.25833
Ct = 3.87 mF
Capacitors is parallel;
Ct = 3.87 mF + 12 mF + 15 mF
Ct = 30.87 mF
Ct = 0.03087 F
<h3>Charge in each capacitor</h3>
Q = CV
Q = 0.03087 x 12
Q = 0.37 C
Thus, the amount of electric charge that resides on each capacitor once it is fully charged is 0.37 C.
Learn more about capacitors here:  brainly.com/question/13578522
#SPJ1
 
        
             
        
        
        
Answer:
opaque = 4
malleable = 3
ductile = 2
lustrous (or whatever the bottom word is) = 1
 
        
             
        
        
        
Answer:
m = 1 kg
Explanation:
Given that,
The force constant of the spring, k = 39.5 N/m
The frequency of oscillation, f = 1 Hz
The frequency of oscillation is given by the formula as formula as follows :

So, the mass that is attached to the spring is 1 kg.
 
        
             
        
        
        
I see the light moving exactly at speed equal to c.
In fact, the second postulate of special relativity states that:
"The speed of light in free space has the same value c<span> in all inertial frames of reference."
</span>
The problem says that I am moving at speed 2/3 c, so my motion is a uniform motion (constant speed). This means I am in an inertial frame of reference, so the speed of light in this frame must be equal to c.