Answer:
An airplane flying
Explanation:
Both a bird and airplane fly, but the airplane is using more mechanical energy to run and power the plane, causing it to fly.
<span>Depends on the precision you're working to.
proton mass ~ 1.00728 amu
neutron mass ~ 1.00866 amu
electron mass ~ electron mass = 0.000549 amu
Binding mass is:
mass of constituents - mass of atom
Eg for nitrogen:
(7*1.00728)-(7*1.00866)-(7*0.000549)
-14.003074 = 0.11235amu
Binding energy is:
E=mc^2 where c is the speed of light. Nuclear physics is usually done in MeV[1] where 1 amu is about 931.5MeV/c^2. So:
0.11235 * 931.5 = 104.6MeV
Binding energy per nucleon is total energy divided by number of nucleons. 104.6/14 = 7.47MeV
This is probably about right; it sounds like the right size!
Do the same thing for D/E/F and recheck using your numbers & you shouldn't go far wrong :)
1 - have you done this? MeV is Mega electron Volts, where one electronVolt (or eV) is the change in potential energy by moving one electron up a 1 volt potential. ie energy = charge * potential, so 1eV is about 1.6x10^-19J (the same number as the charge of an electron but in Joules).
It's a measure of energy, but by E=mc^2 you can swap between energy and mass using the c^2 factor. Most nuclear physicists report mass in units of MeV/c^2 - so you know that its rest mass energy is that number in MeV.</span>
Steel tray because steel is an iron-carbon alloy
KE = 1/2 * m * v2
We have to rearrange this so the subject is mass. (because the question asks for the mass of the object) :
Mass = (2 * KE) / v
Now input the values into this equation to get your answer :
Mass = (2 * KE) / v
Mass = (2 * 480) / 8
Mass = 960 / 8
Mass = 120
Initial speed of the coin (u)= 0 (As the coin is released from rest)
Acceleration due to gravity (a) = g = 9.81 m/s²
Time of fall (t) = 1.5 s
From equation of motion we have:
By substituting values in the equation, we get:
v = 0 + 9.81 × 1.5
v = 14.715 m/s
Speed of the coin as it hits the ground/Final speed of the coin = 14.715 m/s