Answer:
Add Ff from Fa
Explanation:
Fnet = sum of all force
horizontal net force = Ff + Fa
Answer:
h₍₁₎ = 495,1 meters
h₍₂₎ = 480,4 m
h₍₃₎ = 455,9 m
...
..
Explanation:
The exercise is "free fall". t =
Solving with this formula you find the time it takes for the stone to reach the ground (T) = 102,04 s
The heights (h) according to his time (t) are found according to the formula:
h(t) = 500 - 1/2 * g * t²
Remplacing "t" with the desired time.
Speed =dist./time
=73.4/5
=14.68 km/hr
The Impulse delivered to the baseball is 89 kgm/s.
To solve the problem above, we use the formula of impulse.
⇒ Formula:
- I = m(v-u)................. Equation 1
Where:
- I = Impulse delivered to the baseball
- m = mass of the baseball
- v = Final velocity of the baseball
- u = initial speed of the baseball
From the question,
⇒ Given:
- m = 0.8 kg
- u = 67 m/s
- v = -44 m/s
⇒ Substitute these values into equation 1
- I = 0.8(-44-67)
- I = 0.8(-111)
- I = -88.8
- I ≈ -89 kgm/s
Note: The negative tells that the impulse is in the same direction as the final velocity and therefore can be ignored.
Hence, The Impulse delivered to the baseball is 89 kgm/s.
Learn more about impulse here: brainly.com/question/7973509
Answer:
Explanation:
Let the charge particle have charge equal to +q .
force due to electric field will be along the field that is along y - axis . To balance it force by magnetic force must be along - y axis. ( negative of y axis )
force due to magnetic field = q ( v x B ) , v is velocity and B is magnetic field.
F = q ( v i x B k ) , ( velocity is along x direction and magnetic field is along z axis. )
= (Bqv) - j
= - Bqv j
The force will be along - ve y - direction .
If we take charge as negative or - q
force due to electric field will be along - y axis .
magnetic force = F = -q ( v i x B k )
= + Bqv j
magnetic force will be along + y axis
So it is difficult to find out the nature of charge on the particle from this experiment.