<span>0.0687 m
The balanced equation is
BaCl2 + Na2SO4 ==> BaSO4 + 2 NaCl
Looking at the equation, it indicates that there's a 1 to 1 ratio of BaCl2 and Na2SO4 in the reaction. So the number of moles of each will be equal. Now calculate the number of moles of Na2SO4 we had. Start by looking up atomic weights.
Atomic weight sodium = 22.989769
Atomic weight sulfur = 32.065
Atomic weight oxygen = 15.999
Molar mass Na2SO4 = 2 * 22.989769 + 32.065 + 4 * 15.999 = 142.040538 g/mol
Moles Na2SO4 = 0.554 g / 142.040538 g/mol = 0.003900295 mol
Molarity is defined as moles per liter, so let's do the division.
0.003900295 mol / 0.0568 l = 0.068667165 mol/l = 0.068667165 m
Rounding to 3 significant figures gives 0.0687 m</span>
Answer:
All three states of matter (solid, liquid and gas) expand when heated. The atoms themselves do not expand, but the volume they take up does.
When a solid is heated, its atoms vibrate faster about their fixed points. The relative increase in the size of solids when heated is therefore small. Metal railway tracks have small gaps so that when the sun heats them, the tracks expand into these gaps and don’t buckle.
Liquids expand for the same reason, but because the bonds between separate molecules are usually less tight they expand more than solids. This is the principle behind liquid-in-glass thermometers. An increase in temperature results in the expansion of the liquid which means it rises up the glass.
Molecules within gases are further apart and weakly attracted to each other. Heat causes the molecules to move faster, (heat energy is converted to kinetic energy) which means that the volume of a gas increases more than the volume of a solid or liquid.
However, gases that are contained in a fixed volume cannot expand - and so increases in temperature result in increases in pressure.:
Explanation:
Esterification occurs when a carboxylic acid reacts with an alcohol. This reaction can only occur in the presence of an acid catalyst and heat. It takes a lot of energy to remove the -OH from the carboxylic acid, so a catalyst and heat are needed to produce the necessary energy.
Answer:
ΔG° of reaction = -47.3 x
J/mol
Explanation:
As we can see, we have been a particular reaction and Energy values as well.
ΔG° of reaction = -30.5 kJ/mol
Temperature = 37°C.
And we have to calculat the ΔG° of reaction in the biological cell which contains ATP, ADP and HPO4-2:
The first step is to calculate the equilibrium constant for the reaction:
Equilibrium Constant K = ![\frac{[HPO4-2] x [ADP]}{ATP}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BHPO4-2%5D%20x%20%5BADP%5D%7D%7BATP%7D)
And we have values given for these quantities in the biological cell:
[HP04-2] = 2.1 x
M
[ATP] = 1.2 x
M
[ADP] = 8.4 x
M
Let's plug in these values in the above equation for equilibrium constant:
K = ![\frac{[2.1x10^{-3}] x [8.4x10^{-3}] }{[1.2 x 10^{-2}] }](https://tex.z-dn.net/?f=%5Cfrac%7B%5B2.1x10%5E%7B-3%7D%5D%20x%20%5B8.4x10%5E%7B-3%7D%5D%20%7D%7B%5B1.2%20x%2010%5E%7B-2%7D%5D%20%7D)
K = 1.47 x
M
Now, we have to calculate the ΔG° of reaction for the biological cell:
But first we have to convert the temperature in Kelvin scale.
Temp = 37°C
Temp = 37 + 273
Temp = 310 K
ΔG° of reaction = (-30.5
) + (8.314)x (310K)xln(0.00147)
Where 8.314 = value of Gas Constant
ΔG° of reaction = (-30.5 x
) + (-16810.68)
ΔG° of reaction = -47.3 x
J/mol

What is the difference between a quantity and a unit?
Answer:
Physical quantities are a characteristic or property of an object that can be measured or calculated from other measurements. Units are standards for expressing and comparing the measurement of physical quantities. All units can be expressed as combinations of four fundamental units.
Hope this helps!!!
