It has 4 significant figures. If you see the Zero after the one decimal point you don’t count that and instead just started at 6
Answer:

Explanation:
![\Delta H_{rxn}^{0}=\sum [n_{i}\times \Delta H_{f}^{0}(product)_{i}]-\sum [n_{j}\times \Delta H_{f}^{0}(reactant_{j})]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%5E%7B0%7D%3D%5Csum%20%5Bn_%7Bi%7D%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28product%29_%7Bi%7D%5D-%5Csum%20%5Bn_%7Bj%7D%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28reactant_%7Bj%7D%29%5D)
Where
and
are number of moles of product and reactant respectively (equal to their stoichiometric coefficient).
is standard heat of formation and
is standard enthalpy change for reaction at 
So, ![\Delta H_{rxn}=[3mol\times \Delta H_{f}^{0}(CO_{2})_{g}]+[4mol\times \Delta H_{f}^{0}(H_{2}O)_{g}]-[1mol\times \Delta H_{f}^{0}(C_{3}H_{8})_{g}]-[5mol\times \Delta H_{f}^{0}(O_{2})_{g}]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B3mol%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28CO_%7B2%7D%29_%7Bg%7D%5D%2B%5B4mol%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28H_%7B2%7DO%29_%7Bg%7D%5D-%5B1mol%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28C_%7B3%7DH_%7B8%7D%29_%7Bg%7D%5D-%5B5mol%5Ctimes%20%5CDelta%20H_%7Bf%7D%5E%7B0%7D%28O_%7B2%7D%29_%7Bg%7D%5D)
or, ![\Delta H_{rxn}=[3mol\times -393.509kJ/mol]+[4mol\times -241.818kJ/mol]-[1mol\times -103.8kJ/mol]-[5mol\times 0kJ/mol]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B3mol%5Ctimes%20-393.509kJ%2Fmol%5D%2B%5B4mol%5Ctimes%20-241.818kJ%2Fmol%5D-%5B1mol%5Ctimes%20-103.8kJ%2Fmol%5D-%5B5mol%5Ctimes%200kJ%2Fmol%5D)
or, 
1 C
2 A
3 D
4 F
5 E
6 B
These are the answers
Metals are located on the left of the periodic table, and nonmetals are located on the upper right.
Explanation: Metals: Lustrous (shiny)
Good conductors of heat and electricity.
High melting point.
High density (heavy for their size)
Malleable (can be hammered)
Ductile (can be drawn into wires)
Usually solid at room temperature (an exception is mercury)
Opaque as a thin sheet (can't see through metals)
Nonmetals: High ionization energies.
High electronegativities.
Poor thermal conductors.
Poor electrical conductors.
Brittle solids—not malleable or ductile.
Little or no metallic luster.
Gain electrons easily.
Dull, not metallic-shiny, although they may be colorful