1) You need to use the atomic mass of copper.
You can find it in a periodic table. It is 63.546 amu.
2) The atomic mass is the weigthed mass of the different isotopes.
This is, the atomic mass of one element is the atomic mass of each isotope times its corresponding abundance:
=> atomic mass of the element = abundance isotope 1 * atomic mass isotope 1 + abundance isotope 2 * atomic mass isotope 2 + ....+abundance isotope n * atomic mass isotope n.
3) The statement tells there are two isotopes so the abundance of one is x and the abundance of the other is 1 - x
=> 63.546 amu = x * 62.9296 amu + (1-x)*64.9278
=> 63.546 = 62.9296x + 64.9278 - 64.9278x
=> 64.9278x - 62.9296 = 64.9278 - 63.546
=> 1.9982x = 1.3818
=> x = 1.3818 / 1.9982 = 0.6915 = 69.15%
=> 1 - x = 1 - 0.6915 = 0.3085 = 30.85%
Answer:
Cu-63 69.15%;
Cu-65 : 30.85%
Answer:
d water I believe I'm sorry if it's wrot
Answer:
20.0928.
Explanation:
The average atomic mass is (90 * 19.992 + 10* 21) / 100
= 20.0928.
The answer is (3) HClO. In the Cl2, chlorine has an oxidation number of zero. In HCl, the oxidation number is -1. In HClO2, the oxidation number is +3. In HClO, it is +1. You can calculate this by using O with oxidation number of -2 and H with +1.
When you ride a bicycle, several things happen that require energy and it's transformation. You pedaling the bike is transforming chemical energy, supplied by the breakdown of the food you eat, into mechanical energy to turn the pedals. The chemical energy is potential and the mechanical energy is kinetic.