Answer:
Yes , all metals when placed in the heat produces EM radiations
Explanation:
Due to heat , the electrons mobilized and collapsed and electronic transition happened . the electrons shift from low level to high level and so on in the opposite . The electromagnetic radiation are emitted
Answer:
Environment A is not undergoing succession, and Environment B is.
Explanation:
Ecological succession is a gradual process in which ecosystems significantly change over time. Ecological succession is a term used by scientists to describe the change in the structure of a community of different species, or ecosystem. This concept of ecological succession stems from a desire to understand the patterns of change in large and complex ecosystems like forests and how they can exist in places known to be recently formed, such as volcanic islands.
In environment A, the ecosystem is not really changing, organisms are merely returning to their natural habitat. It does not represent any change in the ecosystem.
In environment B, the original ecosystem has become grossly modified, first by the appearance of lichen and mosses and subsequently by grasses shrubs and animals. These sequence of events correlate well with the idea of ecological succession presented in the opening paragraph hence environment B is undergoing ecological succession.
Answer:
A compound is a substance which contains two or more elements chemically combined together.
A compound is formed as a result of a chemical change.
Explanation:
Hello!
<span>
You'll need to react
7,5 moles of Sodium with sulfuric acid to produce 3.75 moles of sodium sulfate
</span>
First of all, you need to balance the reaction. The balanced reaction is shown below (ensuring that the Law of Conservation of Mass is met on both sides):
2Na + H₂SO₄ → Na₂SO₄ + H₂
Now, all that you have to do is to use molar equivalences in this reaction applying the coefficients to calculate the moles of Sodium that you'll need:
Have a nice day!
1 mole of carbon dioxide contains a mass of 44 g, out of which 12 g are carbon.
Hence, in this case the mass of carbon in 8.46 g of CO2:
(12/44) × 8.46 = 2.3073 g
1 mole of water contains 18 g, out of which 2 g is hydrogen;
Therefore, 2.6 g of water contains;
(2/18) × 2.6 = 0.2889 g of hydrogen.
Therefore, with the amount of carbon and hydrogen from the hydrocarbon we can calculate the empirical formula.
We first calculate the number of moles of each,
Carbon = 2.3073/12 = 0.1923 moles
Hydrogen = 0.2889/1 = 0.2889 moles
Then, we calculate the ratio of Carbon to hydrogen by dividing with the smallest number value;
Carbon : Hydrogen
0.1923/0.1923 : 0.2889/0.1923
1 : 1.5
(1 : 1.5) 2
= 2 : 3
Hence, the empirical formula of the hydrocarbon is C2H3