Answer:
=16.49 L
Explanation:
Using the equation
P1= 0.6atm V1= 30L, T1= 25+273= 298K, P2= 1atm, V2=? T2= 273
P1V1/T1= P2V2/T2
0.6×30/298= 1×V2/273
V2=16.49L
Hello!
Your answer is A, asthenosphere
<u>The asthenosphere is a part of the mantle</u>. It helps move the plates in the Earth.
It is <u>below the lithosphere,</u> between <u>80 and 200 km</u> below the surface.
Therfore, the asthenosphere is <u>the part of the mantle that is still a solid but flows like a thick, heavy liquid.</u>
<u />
Hope this helps!
Have a great day!
Answer:
We might just have to end it together
Explanation:
I tried to answer it now I'm stuck in the same hole -_-
Explanation:
As it is known that in solids, molecules are held together because of strong intermolecular forces of attraction. As a result, they are held together and have definite shape and volume.
Whereas in liquids, molecules are not held so strongly as they are in solids. Hence, they move from their initial position and they do not have definite shape but they have definite volume.
Liquids obtain the shape of container in which they are kept.
In gases, molecules are held together by weak intermolecular forces. As a result, they move far apart from each other and occupy the space of a container or vessel in which they are placed.
The physical state (at room temperature) of the following are determined as follows:
(a) Helium in a toy balloon : Helium at room temperature exists as a gas. So, when helium is present in a toy balloon then it acquires the volume of toy balloon.
(b) Mercury in a thermometer : Mercury at room temperature exists as a liquid. When it is placed in a thermometer then volume of mercury does not get affected.
(c) Soup in a bowl : Since, soup is a liquid. Hence, its volume will not change according to the volume of container.