<h3>Answer;</h3>
- <em>The spheres develop opposite charges.
</em>
- <em>Electrons move from Sphere A to Sphere B.
</em>
- <em>The spheres are charged through induction.</em>
<h3><u>Explanation;</u></h3>
- <u><em>When a negatively charged rod is placed near two neutral metal spheres, the spheres will develop opposite charges, because the neutral metal spheres have both negative and positive charges. </em></u>From the basic law of electrostatics unlike charges attracts and like charges repel.
- Thus, <em><u>the sphere will develop opposite charges, electrons will move from Sphere A to sphere B,</u></em> hence we say that the spheres will be charged by induction such that sphere A will acquire a positive charge while sphere B will acquire negative charge.
It's kinda long but...
A tectonic setting where volcanic action occurs is called <span>a </span>hot-spot (intraplate<span>), which describes volcanic activity that occurs </span>within tectonic plates<span> and is generally NOT related to plate boundaries and plate movements.
</span>Hope this helps!!:)
Answer:
T = 74°C
Explanation:
Given Mw = mass of water = 330g, Ma = mass of aluminium = 840g
Cw = 4.2gJ/g°C = specific heat capacity of water and Ca = 0.9J/g°C = specific heat capacity of aluminium
Initial temperature of water = 100°C.
Initial temperature of aluminium = 29°C
When the boiling water is poured into the aluminum pan, heat is exchanged and after a short time the water and aluminum pan both come to thermal equilibrium at a common temperature T.
Heat lost by water equal to the heat gained by aluminium pan.
Mw × Cw×(100 –T) = Ma × Ca × (T–29)
330×4.2×(100– T) = 890×0.9×(T–29)
1386(100 – T) = 801(T –29)
1386/801(100 – T) = T – 29
1.73(100 – T) = T – 29
173 –1.73T = T –29
173+29 = T + 1.73T
202 = 2.73T
T = 202/2.73
T = 74°C
The answer is A. 1 atm.
Solution:
Pressure in terms of height can be calculated using the formula:
P = pgh
where: p = density (kg/m^3); g = gravitational constant (m/s^2); h = height (m)
Using SI units: P = 1000(kg/m^3)*9.81(m/s^2)*10(m) = 98,100 Pascals
Convert Pascals to atm:
98,100 Pa (1 atm/101325 Pa) = 0.968 atm = rounded up to 1 atm
Considering the fluid as ideal, the pressure will spread throughout its volume. Thus,

If you notice any mistake in my english, please let me know, because my english level is still low.