We have two events that occurred on different axes, the most convenient is to perform the operations on the two axes, and then look for the resulting force.
Our values are,
![m_1=1kg\\m_2 = 2kg\\v_1' = 1.2m/s\\v_1''= 0.8m/s](https://tex.z-dn.net/?f=m_1%3D1kg%5C%5Cm_2%20%3D%202kg%5C%5Cv_1%27%20%3D%201.2m%2Fs%5C%5Cv_1%27%27%3D%200.8m%2Fs)
PAR A) For the X axis, we apply momentum conservation, which is given by,
Total momentum before = Total momentum After
We start from rest, so in X the initial speeds are 0,
![m_1v_1+m_2v_2=m_1v_1'+m_2v_2'](https://tex.z-dn.net/?f=m_1v_1%2Bm_2v_2%3Dm_1v_1%27%2Bm_2v_2%27)
![0+0 = (1*1.2)+(1)v_2'](https://tex.z-dn.net/?f=0%2B0%20%3D%20%281%2A1.2%29%2B%281%29v_2%27)
![V_2' = -1.2m/s](https://tex.z-dn.net/?f=V_2%27%20%3D%20-1.2m%2Fs)
Now we apply for the conservation of the moment, it is part of the rest, so,
![m_1v_1+m_2v_2=m_1v_1''+m_2v_2''](https://tex.z-dn.net/?f=m_1v_1%2Bm_2v_2%3Dm_1v_1%27%27%2Bm_2v_2%27%27)
![0+0=2*0.8+1*v_2''](https://tex.z-dn.net/?f=0%2B0%3D2%2A0.8%2B1%2Av_2%27%27)
![v_2'' = -1.6](https://tex.z-dn.net/?f=v_2%27%27%20%3D%20-1.6)
To find the total speed, we simply apply pitagoras,
![V = \sqrt{v_2'^2+v_2^2''}](https://tex.z-dn.net/?f=V%20%3D%20%5Csqrt%7Bv_2%27%5E2%2Bv_2%5E2%27%27%7D)
![V = \sqrt{1.2^2+1.6^2}](https://tex.z-dn.net/?f=V%20%3D%20%5Csqrt%7B1.2%5E2%2B1.6%5E2%7D)
![V = 2m/s](https://tex.z-dn.net/?f=V%20%3D%202m%2Fs)
PART B) The address is given by,
![tan\theta = \frac{V_2''}{V_2'}](https://tex.z-dn.net/?f=tan%5Ctheta%20%3D%20%5Cfrac%7BV_2%27%27%7D%7BV_2%27%7D)
![\theta = tan^{-1} \frac{V_2''}{V_2'}](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20tan%5E%7B-1%7D%20%5Cfrac%7BV_2%27%27%7D%7BV_2%27%7D)
![\theta = tan^{-1} \frac{1.6}{1.2}](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20tan%5E%7B-1%7D%20%5Cfrac%7B1.6%7D%7B1.2%7D)
(Below -x axis)