2.57 joule energy lose in the bounce
.
<u>Explanation</u>:
when ball is the height of 1.37 m from the ground it has some gravitational potential energy with respect to hits the ground
Formula for gravitational potential energy given by
Potential Energy = mgh
Where
,
m = mass
g = acceleration due to gravity
h = height
Potential energy when ball hits the ground
m= 0.375 kg
h = 1.37 m
g = 9.8 m/s²

Potential Energy = 5.03 joule
Potential energy when ball bounces up again
h= 0.67 m

Potential Energy = 2.46 joule
Energy loss = 5.03 - 2.46 = 2.57 joule
2.57 joule energy lose in the bounce
See coulomb's law. Force is inversely proportional to the distance squared. So if you multiply r by 2, the force is multiplied by (½)² = ¼.
a. F/4
The specific heat of a metal or any element or compound can be determined using the formula Cp = delta H / delta T / mass. delta pertains to change. That is change in enthalpy and change in temperature. From the given data, Cp is equal to 343 cal per (86-19) c per 55 grams. This is equal to 0.093 cal / g deg. Celsius
Answer:
20m/s due east
Explanation:
Given parameters:
Displacement eastward = 200m
Time = 10s
Unknown:
Velocity = ?
Solution:
Velocity is the displacement divided by time;
Velocity =
Velocity =
= 20m/s due east