1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
trasher [3.6K]
3 years ago
7

A 12 n cart is moving on a horizontal surface with a coefficient of kinetic friction of 0.20. what force of friction must be ove

rcome to keep the object moving at a constant velocity?
Physics
1 answer:
jonny [76]3 years ago
4 0

We must remember that the total net force equation at constant velocity is:

<span>F – Ff = 0</span>

of

F - µN = 0

Using Newton's 2nd Law of Motion:<span>

F = m a 

<span>Where,

F = net force acting on the body 
m = mass of the body 
a = acceleration of the body 

Since the cart is moving at a constant velocity, then acceleration is zero, hence the working equation simplifies to 

F = net Force = 0 

Therefore, 

F - µN = 0 

where 

µ = coefficient of friction = 0.20 
N = normal force acting on the cart = 12 N 

Therefore, 

F - 0.20(12) = 0 

<span>F = 2.4 N </span></span></span>
You might be interested in
Water is pumped steadily out of a flooded basement at a speed of 5.4 m/s through a uniform hose of radius 0.83 cm. The hose pass
Gala2k [10]

To solve this problem it is necessary to apply the concepts related to the flow as a function of the volume in a certain time, as well as the potential and kinetic energy that act on the pump and the fluid.

The work done would be defined as

\Delta W = \Delta PE + \Delta KE

Where,

PE = Potential Energy

KE = Kinetic Energy

\Delta W = (\Delta m)gh+\frac{1}{2}(\Delta m)v^2

Where,

m = Mass

g = Gravitational energy

h = Height

v = Velocity

Considering power as the change of energy as a function of time we will then have to

P = \frac{\Delta W}{\Delta t}

P = \frac{\Delta m}{\Delta t}(gh+\frac{1}{2}v^2)

The rate of mass flow is,

\frac{\Delta m}{\Delta t} = \rho_w Av

Where,

\rho_w = Density of water

A = Area of the hose \rightarrow A=\pi r^2

The given radius is 0.83cm or 0.83 * 10^{-2}m, so the Area would be

A = \pi (0.83*10^{-2})^2

A = 0.0002164m^2

We have then that,

\frac{\Delta m}{\Delta t} = \rho_w Av

\frac{\Delta m}{\Delta t} = (1000)(0.0002164)(5.4)

\frac{\Delta m}{\Delta t} = 1.16856kg/s

Final the power of the pump would be,

P = \frac{\Delta m}{\Delta t}(gh+\frac{1}{2}v^2)

P = (1.16856)((9.8)(3.5)+\frac{1}{2}5.4^2)

P = 57.1192W

Therefore the power of the pump is 57.11W

6 0
3 years ago
A silver wire with resistivity 1.59 × 10-8 Ω-m carries a current density of 4.0 A/mm2, What is the magnitude of the electric fie
Nat2105 [25]

Answer:

Electric field, E = 0.064 V/m

Explanation:

It is given that,

Resistivity of silver wire, \rho=1.59\times 10^{-8}\ \Omega-m

Current density of the wire, J=4\ A/mm^2=4\times 10^6\ A/m^2

We need to find the magnitude of the electric field inside the wire. The relationship between electric field and the current density is given by :

E=J\times \rho

E=4\times 10^6\times 1.59\times 10^{-8}

E = 0.0636 V/m

or

E = 0.064 V/m

So, the magnitude of electric field inside the wire is 0.064 V/m. Hence, this is the required solution.

6 0
3 years ago
Space pilot Mavis zips past Stanley at a constant speed relative to him of 0.800c. Mavis and Stanley start timers at zero when t
inna [77]

Answer:

Explanation:

a. The equation of Lorentz transformations is given by:

x = γ(x' + ut')

x' and t' are the position and time in the moving system of reference, and u is the speed of the space ship. x is related to the observer reference.

x' = 0

t' = 5.00 s

u =0.800 c,

c is the speed of light = 3×10⁸ m/s

Then,

γ = 1 / √ (1 - (u/c)²)

γ = 1 / √ (1 - (0.8c/c)²)

γ = 1 / √ (1 - (0.8)²)

γ = 1 / √ (1 - 0.64)

γ = 1 / √0.36

γ = 1 / 0.6

γ = 1.67

Therefore, x = γ(x' + ut')

x = 1.67(0 + 0.8c×5)

x = 1.67 × (0+4c)

x = 1.67 × 4c

x = 1.67 × 4 × 3×10⁸

x = 2.004 × 10^9 m

x ≈ 2 × 10^9 m

Now, to find t we apply the same analysis:

but as x'=0 we just have:

t = γ(t' + ux'/c²)

t = γ•t'

t = 1.67 × 5

t = 8.35 seconds

b. Mavis reads 5 s on her watch which is the proper time.

Stanley measured the events at a time interval longer than ∆to by γ,

such that

∆t = γ ∆to = (5/3)(5) = 25/3 = 8.3 sec which is the same as part (b)

c. According to Stanley,

dist = u ∆t = 0.8c (8.3) = 2 x 10^9 m

which is the same as in part (a)

7 0
3 years ago
Please help!?!?!?!?!?!?!
adoni [48]

Answer:

D

Explanation:i think but dont get mad if im wrong

5 0
3 years ago
Two long wires hang vertically. wire 1 carries an upward current of 1.60
charle [14.2K]
3.00 is my correct answer this is what my teacher told me.thanks
7 0
3 years ago
Other questions:
  • Convert 100dyne into joule​
    11·1 answer
  • A fugitive tries to hop on a freight train traveling at a constant speed of 5.0 m/s. Just as an empty box car passes him, the fu
    11·2 answers
  • How can you change the phases of matter using thermal energy
    11·1 answer
  • After walking across a carpeted floor in socks, Jim brings his finger near a metal doorknob and receives a shock. what does that
    7·2 answers
  • If the wavelength of orange light is 6 · 10-7 m, calculate its frequency. f = _______ Hz
    14·1 answer
  • Boltzmann’s constant is 1.38066 × 10−23 J/K, and the universal gas constant is 8.31451 J/K · mol.
    13·1 answer
  • Justin strikes a 0.058-kg golf ball with a force of 260 N. If the ball moves with a velocity of 63 m/s, calculate the time the b
    6·1 answer
  • Use the drop-down menus to identify the parts of the
    15·1 answer
  • What can be broken but never held?
    15·2 answers
  • How do light travels
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!