The potential energy would be zero. Only kinetic energy is present in this case. To find out what the answer is we do the equation: mv^2/2 soo...
KE =mv^2/2
KE= 1(2^2)/2 which the answer will come up by 2 Joules.
Buoyant force is the force that is a result from the pressure exerted by a fluid on the object. We calculate this value by using the Archimedes principle where it says that the upward buoyant force that is being exerted to a body that is immersed in the fluid is equal to the fluid's weight that the object has displaced. Buoyant force always acts opposing the direction of weight. We calculate as follows:
Fb = W
Fb = mass (acceleration due to gravity)
Fb = 64.0 kg ( 9.81 m/s^2)
Fb = 627.84 kg m/s^2
Therefore, the buoyant force that is exerted on the diver in the sea water would be 627.84 N
Atoms are the smallest unit of an element
Answer:
The answer is A because the equation is KEi+PEi=KEf+PEf
i means initial (before) and f means final (after)