Answer:
Option D.
Value cannot be calculated without knowing the speed of the train
Explanation:
The speed of the beam can only be calculated accurately when the speed of the train is put into consideration. Based of the theory of relativity, the observer is on the ground, and the train is moving with the beam of light inside it. This causes a variation in the reference frames when making judgements of the speed of the beam. The speed of the beam will be more accurate if the observer is moving at the same sped of the train, or the train is stationary.
To get the correct answer, we have to subtract the speed of the train from the speed calculated.
Yes because mercury has more protons and electrons that tin. (30 more)
| Impedance | = √ [R² +(ωL)²]
R² = 6800² = 4.624 x 10⁷
(ωL)² = (2 · π · f · 2.3 · 10⁻³)²
= 2.0884 x 10⁻⁴ f²
| Z | = √[ (4.624 x 10⁷) + (2.0884 x 10⁻⁴ f²) ] = 1.6 x 10⁵
(1.6 x 10⁵)² = (4.624 x 10⁷) + (2.0884 x 10⁻⁴ f²)
(2.56 x 10¹⁰) - (4.624 x 10⁷) = 2.0884 x 10⁻⁴ f²
Frequency² = (2.56 x 10¹⁰ - 4.624 x 10⁷) / 2.0884 x 10⁻⁴
= 2.555 x 10¹⁰ / 2.0884 x 10⁻⁴
= 1.224 x 10¹⁴
= 122,400 GHz <== my calculation
11.1 MHz <== online impedance calculator
Obviously, I must have picked up some rounding errors
in the course of my calculation.
Answer:
B. A collision scene
Explanation:
It could have been a parade ceremony, but, if you notice the vehicle's hazard lights or an emergency vehicle ahead, it is common sense to figure that they is a collision scene nearby.
Answer:
2.84 seconds
Explanation:
t = ?
distance = 125
Velocity origianal = 60 m/hr = 88 ft/s
AVERAGE velocity = 88/2 = 44 ft/s
44 t = 125
t = 125/44 = 2.84 s