Answer:
Plasma.
Explanation:
In science, matter can be defined as anything that has mass and occupies space. Any physical object that is found on earth is typically composed of matter. Matter are known to be made up of atoms and as a result has the property of existing in states. The three (3) classical states of matter are;
I. Solid.
II. Liquid.
III. Gas
Plasma can be defined as a state of matter in which the electrons temporarily separate from the protons and as a result, it is generally referred to as the fourth (4th) state of matter due to its superheated nature.
Answer:
A. Boyle's Law
B. Charles' Law
C. Gay-Lussac's Law
Explanation:
An air bag inflates due to the decomposition of sodium azide or NaN₃ to completely fill the bag with nitrogen gas which is an example of Boyle's law, which states that the pressure of a given mass of gas is inversely proportional to its volume, hence due to the estricted volume of the airbag, the pressure of the nitrogen gas in the bag increses protecting the occupants of a cr from injuries in a crash
Helium balloon decrease in sice in a freezer is an example of Charlles law which states that the volume of a given mass of gas is nverslely proportionl to its temperature at constant pressure
A can of spray paint will explode if tossed into a fire is an example of Gay-Lussac's Law which states that the pressure of a given mass of gas is directly proportional to its temperature hence the increased pressure causes the can ti explode
pH=6.98
Explanation:
This is a very interesting question because it tests your understanding of what it means to have a dynamic equilibrium going on in solution.
As you know, pure water undergoes self-ionization to form hydronium ions, H3O+, and hydroxide anions, OH−.
2H2O(l]⇌H3O+(aq]+OH−(aq]→ very important!
At room temperature, the value of water's ionization constant, KW, is equal to 10−14. This means that you have
KW=[H3O+]⋅[OH−]=10−14
Since the concentrations of hydronium and hydroxide ions are equal for pure water, you will have
[H3O+]=√10−14=10−7M
The pH of pure water will thus be
pH=−log([H3O+])
pH=−log(10−7)=7
Now, let's assume that you're working with a 1.0-L solution of pure water and you add some 10