Answer:
1.heat a pan of water with just a little bit of water,have a boil
2.chosse ure salt
3.stir in has much salt has u can than take the pan off the heat
4.pour the mix into a glass jar
5.tie a string to an objeet that can lay accross the top and put just the string in ure mix
Explanation oh and look at it everyday hope that helps
First, you need to calculate the standard cell potential using standard reduction potential from a textbook or online. Since Mg becomes Mg+2, magnesium is being oxidized because it is losing electrons, you need to flip its potential
Fe+2 + 2e- --> Fe potential= -0.44
Mg+2 + 2e- --> Mg potential= -2.37
Cell potential= (-0.44) + (+2.37)= 1.93 V
Now, you need to use Nernst formula to get the answer. I have attached a PDF with the work.
Answer:
185.05 g.
Explanation
Firstly, It is considered as a stichiometry problem.
From the balanced equation: 2LiCl → 2Li + Cl₂
It is clear that the stichiometry shows that 2.0 moles of LiCl is decomposed to give 2.0 moles of Li metal and 1.0 moles of Cl₂, which means that the molar ratio of LiCl : Li is (1.0 : 1.0) ratio.
We must convert the grams of Li metal (30.3 g) to moles (n = mass/atomic mass), atomic mass of Li = 6.941 g/mole.
n = (30.3 g) / (6.941 g/mole) = 4.365 moles.
Now, we can get the number of moles of LiCl that is needed to produce 4.365 moles of Li metal.
Using cross multiplication:
2.0 moles of LiCl → 2.0 moles of Li, from the stichiometry of the balanced equation.
??? moles of LiCl → 4.365 moles of Li.
The number of moles of LiCl that will produce 4.365 moles of Li (30.3 g) is (2.0 x 4.365 / 2.0) = 4.365 moles.
Finally, we should convert the number of moles of LiCl into grams (n = mass/molar mass).
Molar mass of LiCl = 42.394 g/mole.
mass = n x molar mass = (4.365 x 42.394) = 185.05 g.
The question is incomplete but i will try to offer as much help as i can.
Answer:
See explanation
Explanation:
The electron was discovered by J.J Thompson. His model of the atom was called the plum-pudding model of the atom.
He discovered that cathode rays being negatively charged particles were deflected by a magnet in just the same way as moving, negative electrically charged particles.
Similarly, in an electric field, they are deflected towards the positive plate of the electrostatic field which shows that they are negatively charged.
Answer:
(C5H7)8
Explanation:
It's empirical formula is given as; C5H7
Molar mass of carbon(C) = 12 g/mol
Molar mass of hydrogen(H) = 1 g/mol
We are told that it's molar mass is 536 g/mol.
To find the molecular formula;
Molecular formula = n × empirical formula
Thus;
n = 536/((12 × 5) + (1 × 7))
n = 8
Thus;
Molecular formula = (C5H7)8