When the Sun's energy moves through space, it reaches Earth's atmosphere and finally the surface. This radiant solar energy warms the atmosphere and becomes heat energy. This heat energy is transferred throughout the planet's systems in three ways: by radiation, conduction, and convection.
He answer is A. <span>encourage agricultural usage in the watershed
if you want to read it for yourself go to
www.nature.org/ourinitiatives/regions/northamerica/unitedstates/indiana/journeywithnature/watersheds...
hope this helps you!!</span>
Answer:
Population 1 indicates growth while Population 2 indicates a declining population
Explanation:
Here, using the given rate of change of the population, we want to determine which of the two is growing and which is declining
From the rate of change of both, we can determine this. Looking at the differential equation for the first one, we can see that it is of positive value. Looking at the differential equation for the second one. we can see it is of negative value
While a positive change rate indicates growth, a negative change rate will indicate otherwise
Hence, we can conclude that the one with a negative rate change will indicate a declining population
Answer:
12.14 cm
Explanation:
mass, m = 15.5 kg
frequency, f = 9.73 Hz
maximum amplitude, A = 14.6 cm
t = 1.25 s
The equation of the simple harmonic motion
y = A Sin ωt
y = A Sin (2 x π x f x t)
put, t = 1.25 s, A = 14.6 cm, f = 9.73 Hz
y = 14.6 Sin ( 2 x 3.14 x 9.73 x 1.25)
y = 14.6 Sin 76.38
y = 12.14 cm
Thus, the displacement of the particle from the equilibrium position is 12.14 cm.
Answer:
Distance between Venus and Sun is 1.0864x10^11 m
Explanation:
Data
T1 (Total time taken by earth to rotate around sun)=365 days
T2 (Total time taken by venus to rotate around sun)=225 days
R1 (Radius b/w Sun and earth)=1.5x10^11m
R2(Distance between Venus and Sun)=?
Solution
Apply Kepler Law
(R2)^3/(R1)^3=(T1)^2/(T2)^2
(R2)^3/(1.5x10^11)^3=(225^2)/(365^2)
R2=1.0864x10^11m