> Non-zero numbers (like 1,2,3,4...) are always significant
> A zero sandwiched between two non-zero numbers is always significant
> Trailing zeros in a decimal (not whole number like million) are always significant.
<span>0,020170 = 2.0170 × 10^-2
5 sig-figs
</span>
The Toroid is form when you have wound conductor around circular body. In this case you have magnatic field inside the core but you dont have any poles because circular body dont have ends. This can be used where you want minimum flux leakage and dont need magnatic poles. i.e. toroidal inductor, toroidal transformer.
The Solenoid is forn when you wound conductor around body with limb. In this case magnatic field creates two poles N and S. Solenoids have little bit flux leakage. This used where you want magnatic poles and flux leakage is not an issue. i.e. relay, motors, electromagnates.
1 == toroid
2= solenoid
We are given an object that is speeding up on a level ground.
Let's remember that the gravitational energy depends on the change in height, therefore, if the object is not changing its height it means that the gravitational energy remains constant.
The kinetic energy depends on the velocity. If the velocity is increasing this means that the kinetic energy is also increasing.
Now, every change in velocity requires acceleration and acceleration requires a force. The force and the distance that the object moves are equivalent to the work that is transferred to the object and therefore, the change in kinetic energy. This means that the total energy of the system increases as work is transferred to the mass.
We have that the total energy of the system increases in the form of kinetic energy and that the gravitational potential energy remains constant. Therefore, the diagrams should look like pie charts that grow but the area of the segment of the potential energy stays the same. It should look similar to the following.
The total work <em>W</em> done by the spring on the object as it pushes the object from 6 cm from equilibrium to 1.9 cm from equilibrium is
<em>W</em> = 1/2 (19.3 N/m) ((0.060 m)² - (0.019 m)²) ≈ 0.031 J
That is,
• the spring would perform 1/2 (19.3 N/m) (0.060 m)² ≈ 0.035 J by pushing the object from the 6 cm position to the equilibrium point
• the spring would perform 1/2 (19.3 N/m) (0.019 m)² ≈ 0.0035 J by pushing the object from the 1.9 cm position to equilbrium
so the work done in pushing the object from the 6 cm position to the 1.9 cm position is the difference between these.
By the work-energy theorem,
<em>W</em> = ∆<em>K</em> = <em>K</em>
where <em>K</em> is the kinetic energy of the object at the 1.9 cm position. Initial kinetic energy is zero because the object starts at rest. So
<em>W</em> = 1/2 <em>mv</em> ²
where <em>m</em> is the mass of the object and <em>v</em> is the speed you want to find. Solving for <em>v</em>, you get
<em>v</em> = √(2<em>W</em>/<em>m</em>) ≈ 0.46 m/s
Its B. Hope this helped :) ♥♥