1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ziro4ka [17]
3 years ago
8

A perfectly conductive plate is placed in the y z-plane. An electromagnetic wave with electric field is incident on the conducto

r. If the wave strikes the plate at t = 0, what are the directions of the electric and magnetic fields of the reflected wave immediately after reflection?
Physics
1 answer:
Marizza181 [45]3 years ago
7 0

Answer:

Electric field will move in y-direction, while magnetic field will move in z-direction.

Explanation:

If we make a sketch of electromagnetic wave propagation, we will discover that, the direction of the electric field will be towards y-direction and the direction of the magnetic field will be towards z-direction.

Therefore, if electromagnetic wave with electric field is incident on the conductor, immediately after reflection, Electric field will move in y-direction, while magnetic field will move in z-direction.

You might be interested in
How many significant figures from 0,020170 kg ?<br> a. 3<br> b. 4<br> c. 5<br> d. 6<br> e. 7
Igoryamba
> Non-zero numbers (like 1,2,3,4...) are always significant
> A zero sandwiched between two non-zero numbers is always significant
> Trailing zeros in a decimal (not whole number like million) are always significant.

<span>0,020170 = 2.0170 × 10^-2

5 sig-figs
 </span>


4 0
3 years ago
Using diagram differentiate between solenoid and a toroid
damaskus [11]

The Toroid is form when you have wound conductor around circular body. In this case you have magnatic field inside the core but you dont have any poles because circular body dont have ends. This can be used where you want minimum flux leakage and dont need magnatic poles. i.e. toroidal inductor, toroidal transformer.


The Solenoid is forn when you wound conductor around body with limb. In this case magnatic field creates two poles N and S. Solenoids have little bit flux leakage. This used where you want magnatic poles and flux leakage is not an issue. i.e. relay, motors, electromagnates.

1 == toroid


2= solenoid


3 0
3 years ago
How do I know if i’m doing number 2 right?
Ksju [112]

We are given an object that is speeding up on a level ground.

Let's remember that the gravitational energy depends on the change in height, therefore, if the object is not changing its height it means that the gravitational energy remains constant.

The kinetic energy depends on the velocity. If the velocity is increasing this means that the kinetic energy is also increasing.

Now, every change in velocity requires acceleration and acceleration requires a force. The force and the distance that the object moves are equivalent to the work that is transferred to the object and therefore, the change in kinetic energy. This means that the total energy of the system increases as work is transferred to the mass.

We have that the total energy of the system increases in the form of kinetic energy and that the gravitational potential energy remains constant. Therefore, the diagrams should look like pie charts that grow but the area of the segment of the potential energy stays the same. It should look similar to the following.

8 0
1 year ago
A 0.3-kg object connected to a light spring with a force constant of 19.3 N/m oscillates on a frictionless horizontal surface. A
Ghella [55]

The total work <em>W</em> done by the spring on the object as it pushes the object from 6 cm from equilibrium to 1.9 cm from equilibrium is

<em>W</em> = 1/2 (19.3 N/m) ((0.060 m)² - (0.019 m)²) ≈ 0.031 J

That is,

• the spring would perform 1/2 (19.3 N/m) (0.060 m)² ≈ 0.035 J by pushing the object from the 6 cm position to the equilibrium point

• the spring would perform 1/2 (19.3 N/m) (0.019 m)² ≈ 0.0035 J by pushing the object from the 1.9 cm position to equilbrium

so the work done in pushing the object from the 6 cm position to the 1.9 cm position is the difference between these.

By the work-energy theorem,

<em>W</em> = ∆<em>K</em> = <em>K</em>

where <em>K</em> is the kinetic energy of the object at the 1.9 cm position. Initial kinetic energy is zero because the object starts at rest. So

<em>W</em> = 1/2 <em>mv</em> ²

where <em>m</em> is the mass of the object and <em>v</em> is the speed you want to find. Solving for <em>v</em>, you get

<em>v</em> = √(2<em>W</em>/<em>m</em>) ≈ 0.46 m/s

8 0
3 years ago
PLEASE HELP IM CONFUSED
tamaranim1 [39]
Its B. Hope this helped :) ♥♥
8 0
3 years ago
Other questions:
  • A wood pipe having an inner diameter of 3 ft. is bound together using steel hoops having a cross sectional area of 0.2 in.2 The
    9·1 answer
  • An enemy sub is approaching a us submarine at 25.0 km/hr that is waiting in ambush. the us submarine needs to know the exact pos
    6·1 answer
  • Please List 3 categories of properties used to classify solids.
    12·1 answer
  • What causes interstellar dust and clouds into plants and stars
    8·1 answer
  • In a particular lab, a cube of ice (Tice = -5.5˚C) is taken and dropped into a calorimeter cup (98g) partially filled with 326 g
    7·1 answer
  • Which has is a product of photosynthesis? A. Carbon Dioxide B. Oxygen C. Hydrogen.
    10·2 answers
  • ميل الجسم الى مقاومة التغير في حالته الساكنه أو الحركية يسمى ؟
    15·2 answers
  • What is the best explanation for how the plates move?
    14·1 answer
  • If I was a scientist and I wanted to measure the intensity of an earthquake I would use
    13·1 answer
  • What class lever is a chest pass in netball?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!