Sodium Hydroxide (NaOH) is also known as lye which is a base (very high ph; Alkaline)
Now, in chemistry, equilibrium is what affects the reaction rate of a reaction. If they are in equilibrium, the concentrations of them will not change (both reactants and products).
Now, lets say that to synthesize a certain chemical, we need it to be in an acidic environment with HCL or some other acid as the catalyst for the reaction.
Well, if we were to add Sodium Hydroxide to this which is very alkaline, the ph would change greatly which affects the reaction rate. If we do not have enough energy to overcome the activation barrier, the reaction will not occur (atleast for a very long time).
However, a common mistake is thinking that a catalyst will affect the equilibrium. This is not true. The reaction will still take place but it will have a very slow reaction rate.
TLDR; Adding a catalyst (like NaOH or Sodium Hydroxide) will not change the equilibrium but instead change the reaction rate. The reaction can still occur, although it can take a very, very long time (like diamonds turning into graphite)
Answer:
Is an isotope of Cu (Copper)
Explanation:
Remember that the mass number will tell you the number of protons and neutrons. If you have the mass number(65) and the number of neutrons (36), you just need to subtract: 65 - 36 = 29 the number or protons.
As this is a neutral isotope, that means that is going to have the same number of protons and electrons, that is 29.
Answer:
Unlike isopropanol, hydrogen peroxide is not a type of alcohol. You might recognize its chemical formula, H2O2, as being similar to that of water (H2O). The difference is that hydrogen peroxide has two oxygen atoms instead of one. That one extra oxygen atom makes it a strong oxidizer.
Answer:
4.77 is the pH of the given buffer .
Explanation:
To calculate the pH of acidic buffer, we use the equation given by Henderson Hasselbalch:
![pH=pK_a+\log(\frac{[salt]}{[acid]})](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%28%5Cfrac%7B%5Bsalt%5D%7D%7B%5Bacid%5D%7D%29)
![pH=-\log[K_a]+\log(\frac{[salt]}{[acid]})](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BK_a%5D%2B%5Clog%28%5Cfrac%7B%5Bsalt%5D%7D%7B%5Bacid%5D%7D%29)
![pH=-\log[K_a]+\log(\frac{[CH_3CH_2COONa]}{[CH_3CH_2COOH]})](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BK_a%5D%2B%5Clog%28%5Cfrac%7B%5BCH_3CH_2COONa%5D%7D%7B%5BCH_3CH_2COOH%5D%7D%29)
We are given:
= Dissociation constant of propanoic acid = 
![[CH_3CH_2COONa]=0.254 M](https://tex.z-dn.net/?f=%5BCH_3CH_2COONa%5D%3D0.254%20M)
![[CH_3CH_2COOH]=0.329 M](https://tex.z-dn.net/?f=%5BCH_3CH_2COOH%5D%3D0.329%20M)
pH = ?
Putting values in above equation, we get:
![pH=-\log[1.3\times 10^{-5}]+\log(\frac{[0.254 M]}{[0.329]})](https://tex.z-dn.net/?f=pH%3D-%5Clog%5B1.3%5Ctimes%2010%5E%7B-5%7D%5D%2B%5Clog%28%5Cfrac%7B%5B0.254%20M%5D%7D%7B%5B0.329%5D%7D%29)
pH = 4.77
4.77 is the pH of the given buffer .