Answer:
Kc = 1.09x10⁻⁴
Explanation:
<em>HF = 1.62g</em>
<em>H₂O = 516g</em>
<em>F⁻ = 0.163g</em>
<em>H₃O⁺ = 0.110g</em>
<em />
To solve this question we need to find the moles of each reactant in order to solve the molar concentration of each reactan and replacing in the Kc expression. For the reaction, the Kc is:
Kc = [H₃O⁺] [F⁻] / [HF]
<em>Because Kc is defined as the ratio between concentrations of products over reactants powered to its reaction coefficient. Pure liquids as water are not taken into account in Kc expression:</em>
<em />
[H₃O⁺] = 0.110g * (1mol /19.01g) = 0.00579moles / 5.6L = 1.03x10⁻³M
[F⁻] = 0.163g * (1mol /19.0g) = 0.00858moles / 5.6L = 1.53x10⁻³M
[HF] = 1.62g * (1mol /20g) = 0.081moles / 5.6L = 0.0145M
Kc = [1.03x10⁻³M] [1.53x10⁻³M] / [0.0145M]
<h3>Kc = 1.09x10⁻⁴</h3>
Hey there!
We know that a chemical reaction is balanced when there is the same amount of each element on both sides of the equation.
According to the law of conservation of mass, matter cannot be created or destroyed, so we must have the same amount of each element on each side of a chemical equation.
We count the amount of each element on each side, and the products should have the same number as the reactants.
Hope this helps!
Answer:
»Climatic change leads to malnutrition.
e.g when its cold season, osmoregulation decreases and rate of metabolism declines.
This is because the enzymes lack that optimum temperature for their catalytic activity to take place hence improper digestion.
»Leads to promotion of predation in ecosystem.
such as reptiles e.g snakes, lizards get away from shelters on cold days since they are cold blooded, hence their predators such as animals, birds increase.
Answer:
Rhodium is used to make electrical contacts, as jewelry and in catalytic converters, but is most frequently used as an alloying agent in other materials, such as platinum and palladium. These alloys are used to make such things as furnace coils, electrodes for aircraft spark plugs and laboratory crucibles.
Explanation:
Answer:
Arrhenius has pointed out that the coefficient of affinity of an acid is proportional to its electrolytic ionization.
Explanation: