B.) Valence Electrons. The nucleus of the valence electrons attracts and pulls atoms together.
By definition of noble gases, neon does not easily form an ionic bond because it belongs to the group of noble or inert gases, so its reactivity is practically nil.
<h3>Noble gases</h3>
Noble gases are not very reactive, that is, they practically do not form chemical compounds. This means that they do not react with other substances, nor do they even react between atoms of the same gas, as is the case with diatomic gases such as oxygen (O₂).
The chemical stability of the noble gases and therefore the absence of spontaneous evolution towards any other chemical form, implies that they are already in a state of maximum stability.
All chemical transformations involve valence electrons, they are involved in the process of covalent bond formation and the formation of ions. Therefore, the practically null reactivity of the noble gases is due to the fact that they have a complete valence shell, which gives them a low tendency to capture or release electrons.
Since the noble gases do not react with the other elements, they are also called inert gases.
<h3>Neon</h3>
Neon does not easily form an ionic bond because it belongs to the group of noble or inert gases, so its reactivity is practically nil.
Learn more about noble gases:
brainly.com/question/8361108
brainly.com/question/11960526
brainly.com/question/19024000
5 Na molecules and 5 Cl molecules
Answer:
This work was done in the European plum (Prunus domestica). The gene for PPV coat protein was separated from the PPV virus and inserted into the plum DNA, which was then regenerated and grown into complete plum trees. These trees now had the additional gene in their DNA and became resistant to PPV.
Answer:
Mass of chemical = 1.5 mg
Explanation:
Step 1: First calculate the concentration of the stock solution required to make the final solution.
Using C1V1 = C2V2
C1 = concentration of the stock solution; V1 = volume of stock solution; C2 = concentration of final solution; V2 = volume of final solution
C1 = C2V2/V1
C1 = (6 * 25)/ 0.1
C1 = 1500 ng/μL = 1.5 μg/μL
Step 2: Mass of chemical added:
Mass of sample = concentration * volume
Concentration of stock = 1.5 μg/μL; volume of stock = 10 mL = 10^6 μL
Mass of stock = 1.5 μg/μL * 10^6 μL = 1.5 * 10^6 μg = 1.5 mg
Therefore, mass of sample = 1.5 mg