Answer:
induced electromotive force (Voltage) E = - N dΦ / dt
Explanation:
When the magnetic flux this coil induces a current in each turn of the coil, which is why an induced electromotive force (Voltage) appears at the ends of the coil.
This phenomenon is fully explained by Faraday's law
E = - dΦ / dt
where in the case of a coil with N turns of has
E = - N dΦ / dt
Rl flux is the product of the normal to the area by the magnetic field, in this case the flux changes so we can assume that the area of the coil is constant
Answer:
There is a dependency relationship between the refractive index of each substance and the radiation wavelength.
The refractive index in a given medium is inversely proportional to the wavelength of a color.
For example:
The rays of the red color have a wavelength greater than the rays of the blue color, therefore they have a lower refractive index and consequently a light scattering less than the blue.
Snell's law :
n₂/n₁ = v₁/v₂ = λ₁ /λ₂
*n: (refractive index)
v: (speed of light propagation)
λ: (wavelength)
The energy content is decreased and so is the particle speed.