A discovery not the others
Answer:negative charge, small relative mass, and found outside the nucleus
Explanation:
The electron is one of the subatomic particles. It is negatively charged and has a relatively small or somewhat negligible mass. It is found outside the nucleus on the orbits. The electron is bound to the nucleus by electrostatic forces of attraction in the Bohr's model of the atom.
The amplitude is 0.8 cm. The wavelength is 2.0 cm.
Answer:
In the analytical method,
- Resolve the vectors into the perpendicular components of the Cartesian coordinates.
- Calculate the magnitude of the resultant vector using the Pythagoras theorem.
Explanation:
- There are two methods to find the magnitude of the resultant vector.
- One is the geometrical method and the other one is the analytical method.
- In the geometrical method, all the vectors are connected the head to tail with the appropriate magnitude and the resultant vector is obtained by joining the initial point and the final point by a vector in the reverse direction. The magnitude of the resultant vector is given by the length of the line.
- In the analytical method, all the vectors are resolved into the perpendicular components.
- Using Pythagoras theorem, the magnitude of the resultant vector can be obtained
- If A and B are the two vectors forming an angle ∅ between them, then the magnitude of the resultant vector is given by the formula

Answer:
7.53 m
Explanation:
Force, F = 47 N
initial velocity, u = 0
Final kinetic energy, Kf = 354 J
Let the distance traveled by the student is s.
According to the work energy theorem,
Work done by all forces = Change in kinetic energy
Force x distance = final kinetic energy - initial kinetic energy
F x s = kf - ki
47 x s = 354
s = 7.53 m