1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tensa zangetsu [6.8K]
2 years ago
7

Which statement about bout waves is correct?

Physics
1 answer:
Eva8 [605]2 years ago
6 0

Answer:

In light waves, the electromagnetic fields oscillate perpendicular to the direction of propagation. Hence, sound waves are longitudinal waves whereas light waves are transverse waves.

You might be interested in
UN BARCO NAVAL ENVÍA UNA SEÑAL A UN SUBMARINO QUE SE ENCUENTRA EN EL MAR DEBAJO DEL BARCO, SI ESTA SEÑAL TIENE UNA LONGITUD DE O
VLD [36.1K]
NOooOoIooOOi Hsushrhndndnrbrbr rgehrbhrhrbr r he rjrnd
4 0
3 years ago
Coulomb’s law and static point charge ensembles (15 points). A test charge of 2C is located at point (3, 3, 5) in Cartesian coor
fenix001 [56]

Answer:

a) F_{r}= -583.72MN i + 183.47MN j + 6.05GN k

b) E=3.04 \frac{GN}{C}

Step-by-step explanation.

In order to solve this problem, we mus start by plotting the given points and charges. That will help us visualize the problem better and determine the direction of the forces (see attached picture).

Once we drew the points, we can start calculating the forces:

r_{AP}^{2}=(3-0)^{2}+(3-0)^{2}+(5+0)^{2}

which yields:

r_{AP}^{2}= 43 m^{2}

(I will assume the positions are in meters)

Next, we can make use of the force formula:

F=k_{e}\frac{q_{1}q_{2}}{r^{2}}

so we substitute the values:

F_{AP}=(8.99x10^{9})\frac{(1C)(2C)}{43m^{2}}

which yields:

F_{AP}=418.14 MN

Now we can find its components:

F_{APx}=418.14 MN*\frac{3}{\sqrt{43}}i

F_{APx}=191.30 MNi

F_{APy}=418.14 MN*\frac{3}{\sqrt{43}}j

F_{APy}=191.30MN j

F_{APz}=418.14 MN*\frac{5}{\sqrt{43}}k

F_{APz}=318.83 MN k

And we can now write them together for the first force, so we get:

F_{AP}=(191.30i+191.30j+318.83k)MN

We continue with the next force. The procedure is the same so we get:

r_{BP}^{2}=(3-1)^{2}+(3-1)^{2}+(5+0)^{2}

which yields:

r_{BP}^{2}= 33 m^{2}

Next, we can make use of the force formula:

F_{BP}=(8.99x10^{9})\frac{(4C)(2C)}{33m^{2}}

which yields:

F_{BP}=2.18 GN

Now we can find its components:

F_{BPx}=2.18 GN*\frac{2}{\sqrt{33}}i

F_{BPx}=758.98 MNi

F_{BPy}=2.18 GN*\frac{2}{\sqrt{33}}j

F_{BPy}=758.98MN j

F_{BPz}=2.18 GN*\frac{5}{\sqrt{33}}k

F_{BPz}=1.897 GN k

And we can now write them together for the second, so we get:

F_{BP}=(758.98i + 758.98j + 1897k)MN

We continue with the next force. The procedure is the same so we get:

r_{CP}^{2}=(3-5)^{2}+(3-4)^{2}+(5-0)^{2}

which yields:

r_{CP}^{2}= 30 m^{2}

Next, we can make use of the force formula:

F_{CP}=(8.99x10^{9})\frac{(7C)(2C)}{30m^{2}}

which yields:

F_{CP}=4.20 GN

Now we can find its components:

F_{CPx}=4.20 GN*\frac{-2}{\sqrt{30}}i

F_{CPx}=-1.534 GNi

F_{CPy}=4.20 GN*\frac{2}{\sqrt{30}}j

F_{CPy}=-766.81 MN j

F_{CPz}=4.20 GN*\frac{5}{\sqrt{30}}k

F_{CPz}=3.83 GN k

And we can now write them together for the third force, so we get:

F_{CP}=(-1.534i - 0.76681j +3.83k)GN

So in order to find the resultant force, we need to add the forces together:

F_{r}=F_{AP}+F_{BP}+F_{CP}

so we get:

F_{r}=(191.30i+191.30j+318.83k)MN + (758.98i + 758.98j + 1897k)MN + (-1.534i - 0.76681j +3.83k)GN

So when adding the problem together we get that:

F_{r}=(-0.583.72i + 0.18347j +6.05k)GN

which is the answer to part a), now let's take a look at part b).

b)

Basically, we need to find the magnitude of the force and divide it into the test charge, so we get:

F_{r}=\sqrt{(-0.583.72)^{2} + (0.18347)^{2} +(6.05)^{2}}

which yields:

F_{r}=6.08 GN

and now we take the formula for the electric field which is:

E=\frac{F_{r}}{q}

so we go ahead and substitute:

E=\frac{6.08GN}{2C}

E=3.04\frac{GN}{C}

7 0
3 years ago
How many joules of kinetic energy does a pendulum have when it has 100 joules of potential energy
zloy xaker [14]

Answer:

The maximum kinetic energy is 100 j.    

Explanation:

<h3>The kinetic energy = (potential energy) + (kinetic energy) and the potential energy of 0 J implying its kinetic energy is 100 J, which is its maximum. </h3>

4 0
3 years ago
Read 2 more answers
The acceleration due to gravity on the surface of Mars is about one third the acceleration due to gravity on Earth’s surface. Th
Lorico [155]
1/3 the weight than it is on earth, duh
3 0
3 years ago
Read 2 more answers
Consider two waves X and Y traveling in the same medium. The two carry the same amount of energy per unit time, but X has one-se
RideAnS [48]

Answer:

7 / 1

Explanation:

The ratio of their amplitude = one-seventh and the ratio of their amplitude = the ratio of their wavelength

Ax / Ay = λx / λy  = 1 / 7

λy / λx = 7 / 1

7 0
3 years ago
Other questions:
  • 3. How does the vapor pressure of water at 10°C compare with its vapor pressure at 50°C? The vapor pressure of water is lower at
    11·2 answers
  • an athlete whirls a 7.00 kg hammer tied to the end of a 1.3 m chain in a horizontal circle the hammer moves at the rate of 1.0 r
    8·1 answer
  • We all depend on electricity. Most electricity is created by electromagnetic generators at large power plants and distributed th
    13·1 answer
  • What type of device is a coal-fired power plant?
    9·1 answer
  • A series circuit contains a 100.0-Ω resistor, a 0.450-H inductor, a 0.360-µF capacitor, and a time-varying source of emf providi
    8·1 answer
  • What is the velocity of a car that travels 556km northwest in 3.2 hours
    9·1 answer
  • A vertical cylinder with a heavy piston contains air at 300 K. The initial pressure is 2.0 x 105 Pa and the initial volume is 0.
    9·1 answer
  • A hockey puck struck by a hockey stick is given an initial speed v0 in the positive x-direction. The coefficient of kinetic fric
    12·1 answer
  • Please help very easy 5th grade work giving brainliest
    10·1 answer
  • Which of the following is an example of wernickes aphasia?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!