Answer:
= 100kJ
Explanation:
The reverse reaction's activation energy of a reaction is the activation energy of the forward reaction plus ΔH of the reaction:
Ea of forward reaction =75kJ
∆H = -175 kJ/mol
Ea of reverse reaction = 75 +(-175)
= 100kJ
Note that a reverse reaction is one which can proceed in both direction depending on the conditions.
Answer:
5 moles of oxygen are required.
Explanation:
Given data:
Moles of O₂ required = ?
Moles of H₂ present = 10 mol
Solution:
Chemical equation:
O₂ + 2H₂ → 2H₂O
Now we will compare the moles of oxygen and hydrogen.
H₂ : O₂
2 : 1
10 : 1/2×10 = 5 mol
5 moles of oxygen are required.
Yes. If this is the balanced equation:
AlCl3 + 3Na —— 3NaCl + Al
then Al was reduced from a 3+ oxidation (to neutralize the 3- from the chlorine) to a 0 oxidation (elemental ground state).
Answer:
Option A:
Zn(s) + Cu^(2+) (aq) → Cu(s) + Zn^(2+)(aq)
Explanation:
The half reactions given are:
Zn(s) → Zn^(2+)(aq) + 2e^(-)
Cu^(2+) (aq) + 2e^(-) → Cu(s)
From the given half reactions, we can see that in the first one, Zn undergoes oxidation to produce Zn^(2+).
While in the second half reaction, Cu^(2+) is reduced to Cu.
Thus, for the overall reaction, we will add both half reactions to get;
Zn(s) + Cu^(2+) (aq) + 2e^(-) → Cu(s) + Zn^(2+)(aq) + 2e^(-)
2e^(-) will cancel out to give us;
Zn(s) + Cu^(2+) (aq) → Cu(s) + Zn^(2+)(aq)