Answer:
Resulting Change in the Magnetic Flux 
Explanation:
Thanks!
Answer: 6700m/s^2 E
Explanation:
Given the following :
Velocity of ball before being hit by a racquet = initial velocity(u) = 55m/s W
Velocity of the ball after being hit = final Velocity (v) = 45m/s E
Time of contact between ball and racquet (t) = 1.5 × 10^-2
The acceleration of a body is the change in Velocity of a body with time. It given by:
Acceleration (a) = [final Velocity(v) - initial velocity(u)] / time(t)
The westward direction is towards the left and thus Velocity takes a negative value, similarly, if it's towards the right, Velocity takes a positive value.
Therefore,
a = [45 - (-55)] / 1.5×10^-2
a = [45 + 55] / 0.015
a = 100 / 0.015
a = 6666.6666 m/s^2
a = 6700m/s^2 E
Since the value of acceleration is positive, the direction is towards the East (acceleration is in the direction of the ball's final Velocity).
Answer:
- <em>In both cases the tension in the rope is </em><u>equal to 500N</u>
Explanation:
It may be that in the case of the <em>tree</em>, the result is more intuitive, because you can think that there is only one force. But this is misleading.
To find the <em>tension in the rope</em>, you should draw a free body diagram. By doing so, you would find that the rope is static because there are two opposite forces. Assuming, for simplicity, that the rope is horizontal, a force of 500N is pulling to one direction (let's say to the right) and a force of 500N is pulling to the opposite direction (to the left). Else, the rope would not be static.
That analysys is the same for the<em> rope tied to the tree</em> ( the tree is pulling with 500N, such as the man, but in opposite direction) and when the rope is pulled by <em>two men</em> on opposite ends, each with<em> forces of 500N.</em>
Hence, the tension is the same and equal to 500N.
The first law, which deals with changes in the internal energy, thus becomes 0 = Q - W, so Q = W.
If the system does work, the energy comes from heat flowing into the system from the reservoir; if work is done on the system, heat flows out of the system to the reservoir
B <span> of Earth’s surface is covered by water. Very little or no light penetrates beyond a few hundred feet in water</span>