1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nexus9112 [7]
3 years ago
12

A surveyor is trying to find the height of a hill . he/she takes a sight on the top of the hill and find that the angle of eleva

tion is 40°. he/she move a distance of 150 metres on level ground directly away from the hill and take a second sight. from this point the angl.e of elevation is 22°. find the height of the
hill​
Engineering
1 answer:
Taya2010 [7]3 years ago
3 0

Answer:

height ≈ 60.60 m

Explanation:

The surveyor is trying to find the height of the hill . He takes a sight on the top of the hill and finds the angle of elevation is 40°. The distance from the hill where he measured the angle of elevation of 40° is not known.

Now he moves 150 m on level ground directly away from the hill and take a second sight from this point and measures the angle of elevation as 22°. This illustration forms a right angle triangle. The opposite side of the triangle is the height of the hill. The adjacent side of the triangle which is 150 m is the distance on level ground directly away from the hill.

Using tangential ratio,

tan 22° = opposite/adjacent

tan 22° = h/150

h = 150 × tan 22°

h = 150 × 0.40402622583

h = 60.6039338753

height ≈ 60.60 m

You might be interested in
Can u say what’s this
tatuchka [14]

Answer:

particles of a solid object packed together

7 0
3 years ago
Read 2 more answers
Design circuits that demonstrate all of the principles listed below. Set up the circuits and take measurements to show that the
Nata [24]

<u>Explanation</u>:

For series

\Delta V=V_{1}+V_{2}+\ldots+V_{n}=I R_{1}+I R_{2}+\ldots+I R_{n}(\text {voltages add to the batter } y)

\(I=I_{1}=I_{2}=I_{n}\) (current is the same)

V=I R(\text {voltage is directly proportional to } R)

R_{e q}=R_{1}+R_{2}+\ldots+R_{n} \quad \text { (resistance increase) }

For parallel

\Delta V=\Delta V_{1}=\Delta V_{2}=\Delta V_{n} \quad(\text { same voltage })

I=I_{1}+I_{2}+\ldots+I_{n}(\text {current adds})

\(I=\frac{\Delta V}{R_{e q}} \quad(R \text { inversal } y \text { proportional to } I)\)

\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\ldots+\frac{1}{R_{n}}

3 0
3 years ago
Two different fuels are being considered for a 2.5 MW (net output) heat engine which can operate between the highest temperature
sveta [45]

Answer:

If the heat engine operates for one hour:

a) the fuel cost at Carnot efficiency for fuel 1 is $409.09 while fuel 2 is $421.88.

b) the fuel cost at 40% of Carnot efficiency for fuel 1 is $1022.73 while fuel 2 is $1054.68.

In both cases the total cost of using fuel 1 is minor, therefore it is recommended to use this fuel over fuel 2. The final observation is that fuel 1 is cheaper.

Explanation:

The Carnot efficiency is obtained as:

\epsilon_{car}=1-\frac{T_c}{T_H}

Where T_c is the atmospheric temperature and T_H is the maximum burn temperature.

For the case (B), the efficiency we will use is:

\epsilon_{b}=0.4\epsilon_{car}

The work done by the engine can be calculated as:

W=\epsilon Q=\epsilon H_v\cdot m_{fuel} where Hv is the heat value.

If the average net power of the engine is work over time, considering a net power of 2.5MW for 1 hour (3600s), we can calculate the mass of fuel used in each case.

m=\frac{P\cdot t}{\epsilon H_v}

If we want to calculate the total fuel cost, we only have to multiply the fuel mass with the cost per kilogram.

TC=m\cdot c

8 0
3 years ago
Consider the following ways of handling deadlock: (1) banker’s algorithm, (2) detect
Andrew [12]

Answer:

b

Explanation:

7 0
3 years ago
Air enters the 1 m² inlet of an aircraft engine at 100 kPa and 20° C with a velocity of 180 m/s. Determine: a) The volumetric fl
Shkiper50 [21]

Answer:

a) 180 m³/s

b) 213.4 kg/s

Explanation:

A_1 = 1 m²

P_1 = 100 kPa

V_1 = 180 m/s

Flow rate

Q=A_1V_1\\\Rightarrow Q=1\times 180\\\Rightarrow Q=180\ m^3/s

Volumetric flow rate = 180 m³/s

Mass flow rate

\dot{m}=\rho Q\\\Rightarrow \dot m=\frac{P_1}{RT} Q\\\Rightarrow \dot m=\frac{100000}{287\times 293.15}\times 180\\\Rightarrow \dotm=213.94\ kg/s

Mass flow rate = 213.4 kg/s

3 0
3 years ago
Other questions:
  • 6.15. In an attempt to conserve water and to be awarded LEED (Leadership in Energy and Environmental Design) certification, a 20
    14·1 answer
  • A computer maintenance company wants to 'capture' the knowledge that employees carry around in their heads by creating a databas
    5·1 answer
  • A shrinkage limit test is performed on a soil. The initial mass and volume of the soil are: V1=20.2cm^3 , while the final mass a
    15·1 answer
  • What is the purpose of a heater core
    5·2 answers
  • Modify the Rainfall Statistics program you wrote for Programming Challenge 2 of Chapter 7 . The program should display a list of
    15·1 answer
  • Yall pls help me out
    7·1 answer
  • The resistance of a copper wire 200 m long is 21 Q. If its thickness (diameter) is 0.44 mm, its specific resistance is around___
    11·1 answer
  • Which of the following conditions were present in over 80% of paddling fatalities from 1995-2000?
    5·1 answer
  • One of the key characteristics of ________ sessions is that no idea should be immediately accepted or rejected. prototype alpha
    15·1 answer
  • How many hours should I charge a 4.8 volt 600mah battery(it is urgent)
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!