Answer:
The algorithm is as follows:
1. Declare Arr1 and Arr2
2. Get Input for Arr1 and Arr2
3. Initialize count to 0
4. For i in Arr2
4.1 For j in Arr1:
4.1.1 If i > j Then
4.1.1.1 count = count + 1
4.2 End j loop
4.3 Print count
4.4 count = 0
4.5 End i loop
5. End
Explanation:
This declares both arrays
1. Declare Arr1 and Arr2
This gets input for both arrays
2. Get Input for Arr1 and Arr2
This initializes count to 0
3. Initialize count to 0
This iterates through Arr2
4. For i in Arr2
This iterates through Arr1 (An inner loop)
4.1 For j in Arr1:
This checks if current element is greater than current element in Arr1
4.1.1 If i > j Then
If yes, count is incremented by 1
4.1.1.1 count = count + 1
This ends the inner loop
4.2 End j loop
Print count and set count to 0
<em>4.3 Print count</em>
<em>4.4 count = 0</em>
End the outer loop
4.5 End i loop
End the algorithm
5. End
Answer:
C. Welded contacts on the thermostat
Explanation:
Any fault that keeps the heating element heating when it should not is a fault that will cause the symptom described. The details <em>depend on the design of the brewer</em> (not given).
"A short at the terminals" depends on what terminals are being referenced. The device on-off switch terminals are normally connected together when the brewer is turned on, so a short there may not be observable.
"Welded contacts on the thermostat" will have the observed effect if the thermostat is the primary means of ending the brewing cycle. If the thermostat of interest is an overheat protective device not normally involved in ending the brewing cycle, then that fault may not cause the observed symptom.
__
If the heating element is open-circuit, no heating will occur. A gasket leak may cause a puddle, but may have nothing to do with the end of the brewing cycle. (Loss of water can be expected to end boiling, rather than prolong it.)
Answer:
All 3 principal stress
1. 56.301mpa
2. 28.07mpa
3. 0mpa
Maximum shear stress = 14.116mpa
Explanation:
di = 75 = 0.075
wall thickness = 0.1 = 0.0001
internal pressure pi = 150 kpa = 150 x 10³
torque t = 100 Nm
finding all values
∂1 = 150x10³x0.075/2x0,0001
= 0.5625 = 56.25mpa
∂2 = 150x10³x75/4x0.1
= 28.12mpa
T = 16x100/(πx75x10³)²
∂1,2 = 1/2[(56.25+28.12) ± √(56.25-28.12)² + 4(1.207)²]
= 1/2[84.37±√791.2969+5.827396]
= 1/2[84.37±28.33]
∂1 = 1/2[84.37+28.33]
= 56.301mpa
∂2 = 1/2[84.37-28.33]
= 28.07mpa
This is a 2 d diagram donut is analyzed in 2 direction.
So ∂3 = 0mpa
∂max = 56.301-28.07/2
= 14.116mpa
Answer:
Depends on the battery and the current type.
Is it AC or DC?
Explanation:
Could you mark as brainiest.
I need it for my account
Thank you! :)
Answer:

Explanation:
Given

Required
Convert to standard form

From laws of indices

So,
is equivalent to





Hence, the standard form of
is 