1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
velikii [3]
3 years ago
9

Short-term memoryA) has a larger storage capacity than long-term memory.B) takes longer to retrieve than long-term memory.C) inv

olves transient modifications in the function of preexisting synapses, such as channel modification.D) two of these answers.E) all of these answers.
Engineering
1 answer:
zaharov [31]3 years ago
6 0

Answer:D

Explanation:

Take longer time to retrieve than long term memory, involves transient modifications in the function of pre existing synapses, such as channel modifications.

You might be interested in
What is the primary water source for a water cooled recovery unit's condensing coll?
nataly862011 [7]
A) chilled water from evaporator
7 0
3 years ago
What are the three elementary parts of a vibrating system?
zhenek [66]

Answer:

the three part are mass, spring, damping

Explanation:

vibrating system consist of three elementary system namely

1) Mass - it is a rigid body due to which system experience vibration and kinetic energy due to vibration is directly proportional to velocity of the body.

2) Spring -  the part that has elasticity and help to hold mass

3) Damping - this part considered to have zero mass and  zero elasticity.

7 0
3 years ago
The unit for volume flow rate is gallons per minute, but cubic feet per second is preferred. Use the conversion factor tables in
amm1812

Answer:

The conversion factor is 0.00223 ( 1 gallon per minute equals 0.00223 cubic feet per second)

Explanation:

Since the given volume flow rate is gallons per minute.

We know that 1 gallon = 3.785 liters and

1 minute = 60 seconds

Let the flow rate be Q\frac{gallons}{minute}

Now replacing the gallon and the minute by the above values we get

Q'=Q\frac{gallon}{minute}\times \frac{3.785liters}{gallon}\times \frac{1minute}{60seconds}

Thus Q'=0.631Q\frac{liters}{second}

Now since we know that 1 liter = 0.0353ft^{3}

Using this in above relation we get

Q'=0.631Q\frac{liters}{second}\times \frac{0.0353ft^3}{liters}\\\\\therefore Q'=0.00223Q

From the above relation we can see that flow rate of 1 gallons per minute equals flow rate of 0.00223 cubic feet per second. Thus the conversion factor is 0.00223.

3 0
3 years ago
I want a problems and there solutions of The inception of cavitation?​
Ugo [173]

Answer:

The overview of the given scenario is explained in explanation segment below.

Explanation:

  • The inception of cavitation, that further sets the restriction for high-pressure and high-free operation, has always been the matter of substantial experimental study over the last few generations.
  • Cavitation inception would be expected to vary on the segment where the local "PL" pressure mostly on segment keeps falling to that are below the "Pv" vapor pressure of the fluid and therefore could be anticipated from either the apportionment of the pressure.

    ⇒  A cavitation number is denoted by "σ" .

4 0
3 years ago
A conical enlargement in a vertical pipeline is 5 ft long and enlarges the pipe diameter from 12 in. to 24 in. diameter. Calcula
makkiz [27]

Answer:

F_y = 151319.01N = 15.132 KN

Explanation:

From the linear momentum equation theory, since flow is steady, the y components would be;

-V1•ρ1•V1•A1 + V2•ρ2•V2•A2 = P1•A1 - P2•A2 - F_y

We are given;

Length; L = 5ft = 1.52.

Initial diameter;d1 = 12in = 0.3m

Exit diameter; d2 = 24 in = 0.6m

Volume flow rate of water; Q2 = 10 ft³/s = 0.28 m³/s

Initial pressure;p1 = 30 psi = 206843 pa

Thus,

initial Area;A1 = π•d1²/4 = π•0.3²/4 = 0.07 m²

Exit area;A2 = π•d2²/4 = π•0.6²/4 = 0.28m²

Now, we know that volume flow rate of water is given by; Q = A•V

Thus,

At exit, Q2 = A2•V2

So, 0.28 = 0.28•V2

So,V2 = 1 m/s

When flow is incompressible, we often say that ;

Initial mass flow rate = exit mass flow rate.

Thus,

ρ1 = ρ2 = 1000 kg/m³

Density of water is 1000 kg/m³

And A1•V1 = A2•V2

So, V1 = A2•V2/A1

So, V1 = 0.28 x 1/0.07

V1 = 4 m/s

So, from initial equation of y components;

-V1•ρ1•V1•A1 + V2•ρ2•V2•A2 = P1•A1 - P2•A2 - F_y

Where F_y is vertical force of enlargement pressure and P2 = 0

Thus, making F_y the subject;

F_y = P1•A1 + V1•ρ1•V1•A1 - V2•ρ2•V2•A2

Plugging in the relevant values to get;

F_y = (206843 x 0.07) + (1² x 1000 x 0.07) - (4² x 1000 x 0.28)

F_y = 151319.01N = 15.132 KN

6 0
3 years ago
Other questions:
  • A motor vehicle has a mass of 1.8 tonnes and its wheelbase is 3 m. The centre of gravity of the vehicle is situated in the centr
    14·1 answer
  • A belt/pulley system has tight side of 1000N, a slack side of 100N and a wrap angle of 500 degrees. The belt is just on the poin
    5·1 answer
  • A heat pump and a refrigerator are operating between the same two thermal reservoirs. Which one has a higher COP?
    10·1 answer
  • One kg of an idea gas is contained in one side of a well-insulated vessel at 800 kPa. The other side of the vessel is under vacu
    11·1 answer
  • In designing a fixed-incline self-acting thrust pad when the width of the pad is much larger than the length, it is of interest
    10·1 answer
  • The Bureau of Labor and Statistics predicted that the field of biomedical engineering would increase by 62 percent over the comi
    5·1 answer
  • Traffic at a roundabout moves
    8·1 answer
  • What engine does the mercedes 500e have​
    5·1 answer
  • The point of contact of two pitch circles of mating gears is called?
    10·1 answer
  • Summarize the difference in hydraulic and pneumatic systems.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!