Answer:
z = 0.8 (approx)
Explanation:
given,
Amplitude of 1 GHz incident wave in air = 20 V/m
Water has,
μr = 1
at 1 GHz, r = 80 and σ = 1 S/m.
depth of water when amplitude is down to 1 μV/m
Intrinsic impedance of air = 120 π Ω
Intrinsic impedance of water = 
Using equation to solve the problem

E(z) is the amplitude under water at z depth
E_o is the amplitude of wave on the surface of water
z is the depth under water



now ,


taking ln both side
21.07 x z = 16.81
z = 0.797
z = 0.8 (approx)
Answer:
2) c) give-way vessel
3) a) With one short blast
Explanation:
2) A vessel that is required to take early substantial action to ensure avoiding collision called Give way vessel
In overtaking, the vessel intending to overtake is the Give-Way Vessel the vessel that is going to be overtaken is the Stand-On Vessel
Therefore, the correct option is c) give-way vessel
3) When vessels use sound signals in a meeting head on situation both vessel are Give-Way vessels and both vessel pass the each other by turning to the starboard side therefore they intend to pass each other on their port side requiring one short blast
Therefore, the correct option is a) With one short blast.
<span>In Ionic type of bonding, electrons are lost (more
protons than electrons and positive charge) or gained (more electrons than
protons, still a negative charge) by atoms, and the atoms are held together by
electrical attraction in the process. Covalent bondings are the sharing of electrons
as well as partial bondings. Covalent bondings’ electrons have the same charges
thus, there is no gaining or losing electrons in the process of sharing. Strong
bondings are applicable only to Hydrogen (H) atoms. </span>
Answer:
Explanation:
Given height of lamp from the ceiling = 2.6m
mass of the lamp = 3.8kg
acceleration due to gravity = 9.81m/s²
As the body falls to the ground, it falls under the influence of gravity.
Gravitational potential energy = mass*acc due to gravity * height
Gravitational potential energy = 3.8*2.6*9.81
Gravitational potential energy = 96.923 Joules
b) Kinetic energy = 1/2 mv²
m = mass of the body (in kg)
v = velocity of the body (in m/s²)
To get the velocity v, we will use the equation of motion 

Since mass = 3.8kg

c) To know how fast the lamp is moving when it hits the ground, we will use the formula. When the body hits the ground, the height covered will be 0m. this means that the body is not moving once it hits the ground. It stays in one position. The energy possessed by the body at this point is potential energy. The correct answer is therefore 0 m/s