Momentum will be conserved in one dimension in the explosion.
<span>
Given that the fragment a acquires three
times the kinetic energy of the fragment b.
<span>
P</span><span><span>initial </span><span>= p</span></span>final ⇒ 0 =mₐv⁰ₐ+mьv⁰ь= 0 ⇒ v⁰ь = -mₐv⁰ₐ/mь
KE= 3KEь
⇒1/2 mₐv⁰ₐ² = 3 (1/2mьv⁰ь²)
</span><span>
⇒1/2 mₐv⁰ₐ² = 3/2 mь(-mₐv⁰ₐ/mь)²
⇒1/2 mₐv⁰ₐ² = 3/2 mь(mₐ²v⁰ₐ²/mь²)
</span>
⇒1/2 x 2/3 = mₐ/mь= 1/3
<span>
<span>
Thus the ratio
of the masses of the fragments is 1:3.
</span></span>
Answer:
Follows are the explanation to this question:
Explanation:
In this solution, it is defined that there are two principal motions for the moon, which are its revolution as well as rotation. In such a movement called revolution, its Moon is relocating around the Earth, in which the approximate movement of the moon from around earth has an average movement of about 13.2° per day, or 92 degrees every week, that's once in 27.3 days.
Answer: 
Explanation:
In the image attached with this answer are shown the given options from which only one is correct.
The correct expression is:

Because, if we derive velocity
with respect to time
we will have acceleration
, hence:

Where
is the mass with units of kilograms (
) and
with units of meter per square seconds
, having as a result 
The other expressions are incorrect, let’s prove it:
This result has units of
This result has units of
This result has units of
and
is a constant
This result has units of
This result has units of
This result has units of
and
is a constant
This result has units of
and
is a constant
because
is a constant in this derivation respect to
This result has units of
and
is a constant
Answer:
d one is correct
Explanation:
as the electrical energy in the socket is transferred to the electric tea pot