We have volume of gasoline = 14.0 gallon
Time taken to fill automobile tank = 1.50 minutes
So volume rate = 14.0 gallon/1.50 minutes = 9.33 gallon/ minute
We have density of gasoline = 0.77 kg/L = 6.073 lb/US gal
Mass rate = Density * Volume rate
= 9.33 gallon/ minute*6.073 lb/US gal = 56.68 lb/min
So mass flow rate delivered by the gasoline pump in lbm/min = 56.68
Answer:
True. Diffusion and osmosis are forms of passive transport.
Explanation:
In diffusion, particles move from an area of higher concentration to one of lower concentration until equilibrium is reached.
In osmosis, a semipermeable membrane is present, so only the solvent molecules are free to move to equalize concentration.
Answer:
Pascal's law (also Pascal's principle[1][2][3] or the principle of transmission of fluid-pressure) is a principle in fluid mechanics given by Blaise Pascal that states that a pressure change at any point in a confined incompressible fluid is transmitted throughout the fluid such that the same change occurs everywhere.[4] The law was established by French mathematician Blaise Pascal in 1653 and published in 1663.[5][6]
The potential energy of an object is defined by the equation: PE = mgh, where m = the mass of the object, g = the gravitational acceleration and h = the object's height above the ground.
Answer:
Kinetic energy is 1425.11 J.
Explanation:
Given:
Mass of the wrench is, 
Height of fall is, 
Force of resistance is, 
Now, the total energy at the top is equal to the potential energy of the wrench at the top since the kinetic energy at the top is 0.
Now, potential energy at the top is given as:

Now, the potential energy at the top is converted to kinetic energy at the bottom and some energy is wasted in overcoming the resistance force by air.
Potential Energy = Kinetic energy + Energy to overcome resistance.
⇒ Kinetic energy = Potential Energy - Energy to overcome resistance.
Energy to overcome resistance force is the work done by the wrench against the resistance force and is given as:

Therefore, Kinetic energy at the bottom is given as:

Hence, the kinetic energy of the wrench be when it hits the water is 1425.11 J.