Answer:
0.15
Explanation:
Assuming the rope is horizontal, sum the forces in the y direction:
∑F = ma
N − mg = 0
N = mg
Sum the forces in the x direction:
∑F = ma
F − Nμ = ma
Substitute:
F − mgμ = ma
mgμ = F − ma
μ = (F − ma) / (mg)
Plug in values:
μ = (8.0 N − 2.0 kg × 2.5 m/s²) / (2.0 kg × 9.8 m/s²)
μ = 0.15
Answer:
1.2 seconds
Explanation:
distance = ((final speed + initial speed) * time)/2
Here given:
Solving steps:
3.8 = ((0 + 6.4) * time))/2
3.8 = 3.2(time)
time = 3.8/3.2
time = 1.1875 seconds ≈ 1.2 seconds
Given:
Horizontal distance between two boats = x = 14 m
One boat is at trough, the other is at crest.
As there is no crests between them meaning the boat are next to each other.
Wavelength is the distance between two consecutive crests/troughs = w
The distance between a crest and a trough next to it = w/2
Complete cycles = c = 5
Time taken for c cycles = t = 15 s
Vertical distance between two boats = y = 2.4 m
To find:
wavelength = w = 2x = 28 m
Amplitude = A = Displacement from mean to extreme position = y/2 = 1.2 m
Time period for one cycle = T = t/c = 15/5 = 3 s/cycle
frequency = 1/T = 1/3 = 0.33 hertz
speed = wavelength/Period = w/T = 28/3 = 9.33 m/s