Answer:1). Distance of far point x=0.9m
Therefore, since the image is virtual
-f=-x = -0.9m
Power of the concave lenses = 1/f = 1/-0.9
= -1.11D
2 ) near point is 21cm = 0.21m
Power = 4-1/near point
= 4/0.21
= 14.2D.
Beginning when the bottom of the object first touches the water,
and as it descends and more and more of it goes under, the
buoyant force on it increases during that time.
As soon as the object is completely underwater, it doesn't matter
how deep under it is, the buoyant force on it remains the same.
Answer:
Option D. The average speed is 2.5 meters/second, and the average velocity is 0 meters/second.
Explanation:
we know that
To find out the average speed divide the total distance by the total time
Let
d -----> the total distance in meters
t -----> the time in seconds
s ----> the speed in meters per second

Remember that

we have


substitute


<u><em>Find out the average velocity</em></u>
To find out the average velocity divide the displacement) by the time
The displacement is the distance from the start point to the end point regardless of the route
In this problem
The start point is A and the end point is A
so
The displacement is equal to zero
therefore
The average velocity is 0 m/sec
Answer:
You can listen to music while doing either one, or you can get someone else to help you that way you have someone to talk to also you finish faster.