Answer:
True
Explanation:
If a thin, spherical, conducting shell carries a negative charge, We expect the excess electrons to mutually repel one another, and, thereby, become uniformly distributed over the surface of the shell. The electric field-lines produced outside such a charge distribution point towards the surface of the conductor, and end on the excess electrons. Moreover, the field-lines are normal to the surface of the conductor. This must be the case, otherwise the electric field would have a component parallel to the conducting surface. Since the excess electrons are free to move through the conductor, any parallel component of the field would cause a redistribution of the charges on the shell. This process will only cease when the parallel component has been reduced to zero over the whole surface of the shell
According to Gauss law
∅ = EA =-Q/∈₀
Where ∅ is the electric flux through the gaussian surface and E is the electric field strength
If the gaussian surface encloses no charge, since all of the charge lies on the shell, so it follows from Gauss' law, and symmetry, that the electric field inside the shell is zero. In fact, the electric field inside any closed hollow conductor is zero
Answer:
Conduction, Convection and Radiation
Explanation:
Hope this helps!
Answer:
Check the explanation
Explanation:
Kindly check the attached image below to see the step by step explanation to the question above.
There are many processes to get nuclear energy. Nuclear energy is basically energy from an atom. For example fission is where the nucleus of an atom ( typically radioactive atoms ) gets split then energy is released ( typically heat). And in radioactive decay radiation is released from an radioactive atom. Hope this helps