Answer:
a = 2 m/s²
Explanation:
average acceleration = change of velocity / change of time
a = Δv/Δt = (20 - 10) / 5 = 10/5 = 2
Answer:
The magnitude of the tension in he string is equal to the magnitude of the weight of the object.
Explanation:
According to the Newton's 1st law, An object will remain at rest or in uniform motion in a straight line unless acted upon by an unbalanced force.
In here, the elevator is moving with a constant speed. So the object must have the equal constant speed. Which means, it has a uniform motion. According to Newton's 1st law, the total unbalanced force on the object must be zero . As we know, there are only two forces are on the object and they are,
The tension in string(T) , The weight of the object(W) .
∴ F = 0
T - W = 0
So to balanced those forces, the magnitude of the tension in the string must be equal to the magnitude of the weight of the object.
Answer:
C. it will not change.
Explanation:
While combing, the rubbing of the comb with the hair, transfer of electron takes place from the hair to the comb and the comb becomes negatively charged. But, this transfer of electron does not make any considerable change in the mass of the hair. This is because the mass of an electron is highly negligible. Now, neglecting the mass of an electron, the transfer of the electrons from the hair to the comb makes charging of the comb, but no loss of mass in the hair. So, the mass of hair will no change.
Measure the length of one side and then cube the answer. So if x represents the measurement of one side, x³ will give you the volume.
If they are both traveling with the same speed that means that they will reach other in the middle of the line initially between them. In other word, each will have to travel the same amount before they reach other.
Now you can calculate the time it takes for only one locomotive to travel half of the total distance between them, and that time is equal to the time you are looking for.
Use
t = S1/2 / v
where t-time, S-distance traveled , v-velocity