Answer: see proof below
<u>Step-by-step explanation:</u>
Use the Double Angle Identity: sin 2Ф = 2sinФ · cosФ
Use the Sum/Difference Identities:
sin(α + β) = sinα · cosβ + cosα · sinβ
cos(α - β) = cosα · cosβ + sinα · sinβ
Use the Unit circle to evaluate: sin45 = cos45 = √2/2
Use the Double Angle Identities: sin2Ф = 2sinФ · cosФ
Use the Pythagorean Identity: cos²Ф + sin²Ф = 1
<u />
<u>Proof LHS → RHS</u>
LHS: 2sin(45 + 2A) · cos(45 - 2A)
Sum/Difference: 2 (sin45·cos2A + cos45·sin2A) (cos45·cos2A + sin45·sin2A)
Unit Circle: 2[(√2/2)cos2A + (√2/2)sin2A][(√2/2)cos2A +(√2/2)·sin2A)]
Expand: 2[(1/2)cos²2A + cos2A·sin2A + (1/2)sin²2A]
Distribute: cos²2A + 2cos2A·sin2A + sin²2A
Pythagorean Identity: 1 + 2cos2A·sin2A
Double Angle: 1 + sin4A
LHS = RHS: 1 + sin4A = 1 + sin4A 
Step-by-step explanation:
c=5/9(f-32) can also be written as c = 5(f - 32)/9.
Multiply each side by 9.
That gives us 9c = 5(f - 32).
Apply distributive rule on the right side.
9c = 5f - 160
Add 160 to the left side.
9c + 160 = 5f
Lastly, divide both sides 5.
(9c + 160)/5 = f
Answer: y = - 0.4 x - 4.5
Step-by-step explanation:
Equation y=mx+b
m is the slope
x is *ANY* x coordinate
y is *ANY* y coordinate
b is y intercept or WHERE the point is on the Y AXIS
Lets look at the given:
Slope (m) is -2/5
Passes through point 15, -9/2
As you can see, the point goes through the Y axis at (-9/2)
Our equation is y = - 0.4 x - 4.5
Answer:
it changes by 4
Step-by-step explanation:
Answer:
A
Step-by-step explanation: