<h2>
Answer: 12 s</h2>
Explanation:
The situation described here is parabolic movement. However, as we are told <u>the instrument is thrown upward</u> from the surface, we will only use the equations related to the Y axis.
In this sense, the main movement equation in the Y axis is:
(1)
Where:
is the instrument's final position
is the instrument's initial position
is the instrument's initial velocity
is the time the parabolic movement lasts
is the acceleration due to gravity at the surface of planet X.
As we know
and
when the object hits the ground, equation (1) is rewritten as:
(2)
Finding
:
(3)
(4)
(5)
Finally:

Save money on fuel and go for longer
The speed he was moving at when he finished falling is 30 m/s.
The given parameters;
mass of the bungee, m = 80 kg
impulse provided by the rope, J = 3200 Ns
initial upward velocity of the jumper, u = 10 m/s
- Let the final velocity after falling = v
- Let the upwards motion = negative
- Let the downwards motion when falling = positive
Apply the principle of conservation of linear momentum;
J = ΔP = Δmv = m(v - u)
3200 = 80(v - (-10))
3200 = 80(v + 10)

Thus, the speed he was moving at when he finished falling is 30 m/s.
Learn more here:brainly.com/question/19027317