Answer:
or ![\theta = 330^\circ](https://tex.z-dn.net/?f=%20%5Ctheta%20%3D%20330%5E%5Ccirc%20)
Step-by-step explanation:
![4 \sin \theta - 1 = -3](https://tex.z-dn.net/?f=%204%20%5Csin%20%5Ctheta%20-%201%20%3D%20-3%20)
![4 \sin \theta = -2](https://tex.z-dn.net/?f=%204%20%5Csin%20%5Ctheta%20%3D%20-2%20)
![\sin \theta = \dfrac{-2}{4}](https://tex.z-dn.net/?f=%20%5Csin%20%5Ctheta%20%3D%20%5Cdfrac%7B-2%7D%7B4%7D%20)
![\sin \theta = -0.5](https://tex.z-dn.net/?f=%20%5Csin%20%5Ctheta%20%3D%20-0.5%20)
For sin θ = 0.5, the reference angle is θ = 30 deg.
![\sin 30^\circ = 0.5](https://tex.z-dn.net/?f=%20%5Csin%2030%5E%5Ccirc%20%3D%200.5%20)
or ![\theta = 330^\circ](https://tex.z-dn.net/?f=%20%5Ctheta%20%3D%20330%5E%5Ccirc%20)
2x+1=13 x=6 so an ok answer would be: 2x+10=40 x=15
Answer:
(2, 3)
Step-by-step explanation:
2x + 5y = 19
5y = -2x + 19
y = ![-\frac{2}{5} x + \frac{19}{5}](https://tex.z-dn.net/?f=-%5Cfrac%7B2%7D%7B5%7D%20x%20%2B%20%5Cfrac%7B19%7D%7B5%7D)
P(abscissa, ordinate)
P(x, 1.5x)
P(2, 3)
![3 = -\frac{2}{5} (2) + \frac{19}{5}](https://tex.z-dn.net/?f=3%20%3D%20-%5Cfrac%7B2%7D%7B5%7D%20%282%29%20%2B%20%5Cfrac%7B19%7D%7B5%7D)
![3 = -\frac{4}{5} + \frac{19}{5}](https://tex.z-dn.net/?f=3%20%3D%20-%5Cfrac%7B4%7D%7B5%7D%20%2B%20%5Cfrac%7B19%7D%7B5%7D)
3 = 15/5
3 = 3
Answer:
18 Skittles
6 M&Ms
Step-by-step explanation:
Set up an equation:
Variable x = number of skittles
Variable y = number of M&Ms
1.50x + 2y = 39
x + y = 24
In the second equation, isolate a variable:
x = 24 - y
Substitute the value of x for 24 - y in the first equation:
1.50(24 - y) + 2y = 39
Use distributive property
36 - 1.5y + 2y = 39
Combine like terms
36 + 0.5y = 39
Isolate variable y:
0.5y = 3
y = 6
Substitute the value of y for 6 in the second equation:
x + 6 = 24
Isolate variable x:
x = 18
Plug these values into any equation of your choice to see if these values are correct (I'll do both equations just to prove it):
1.50(18) + 2(6) = 39
27 + 12 = 39
39 = 39
Correct
x + y = 24
18 + 6 = 24
24 = 24
Correct
The answer is 2500. Hope you get an A+ on whatever you're working on :)