Answer: 1.61
==================================================
Work Shown:
tan(angle) = opposite/adjacent
tan(J) = IK/IJ
tan(J) = 45/28
tan(J) = 1.60714 approximately
tan(J) = 1.61
Y = -2x+0
I don't think you need to add the 0 though.
Step-by-step explanation:
<h2><u>Given :-</u></h2>
(√3-√2)/(√3+√2)
<h2><u>To find :-</u></h2>
Rationalised form = ?
<h2><u>Solution:-</u></h2>
Given that
(√3-√2)/(√3+√2)
The denominator = √3+√2
The Rationalising factor of √3+√2 is √3-√2
On Rationalising the denominator then
=> [(√3-√2)/(√3+√2)]×[(√3-√2)/(√3-√2)]
=> [(√3-√2)(√3-√2)]×[(√3+√2)(√3-√2)]
=> (√3-√2)²/[(√3+√2)(√3-√2)]
=> (√3-√2)²/[(√3)²-(√2)²]
Since (a+b)(a-b) = a²-b²
Where , a = √3 and b = √2
=> (√3-√2)²/(3-2)
=> (√3-√2)²/1
=> (√3-√2)²
=> (√3)²-2(√3)(√2)+(√2)²
Since , (a-b)² = a²-2ab+b²
Where , a = √3 and b = √2
=> 3-2√6+2
=> 5-2√6
Hence, the denominator is rationalised.
<h2>
<u>Answer</u><u>:</u></h2>
Rationalised form of (√3-√2)/(√3+√2) is 5 - 2√6.
<h2><u>U</u><u>sed </u><u>formulae:</u><u>-</u></h2>
- (a+b)(a-b) = a²-b²
- (a-b)² = a²-2ab+b²
- The Rationalising factor of √3+√2 is √3-√2
The formula is A = Pe^(rt)where A = amount in the account after a specified period of timeP = principlee = a constant value (similar to using pi in a formula)r = rate (change to a decimal)t = time (in years unless otherwise specified)
A = 5500e^(.08*6)A = $8888.41Always round money to two decimal places unless told otherwise.