First, we'll identify the beaker containing pure water as follows:
We'll take equal masses from each of the three beakers and measure the mass of each.
We'll then identify the density of each by using the rule : density =mass/volume
Pure water will be the liquid having density equal to 1 gm/cm^3
Then, we'll differentiate between the salt and sugar solution by measuring the conductivity of each solution. Salt solution is a good conductor while solution of sugar is a bad conductor.
Molar mass Argon = <span>39.948 g/mol
number of moles = mass solute / molar mass
n = 150 / </span><span>39.948
n = 3.7548 moles
hope this helps!</span>
Answer:
The Answer is (C)
Explanation:
Reasons are when anything cools or condenses it tends to be more solid, and solids don't move.
Answer:
This question is somehow not clear, because a typical human eye can notice objects which have wavelengths from about 380 to 740 nanometers. This is called visible spectrum (the portion of the electromagnetic spectrum that is visible to the human eye). Electromagnetic radiation in this range of wavelengths is called visible light or simply light.
Someone even can see extra colors - they able to see beyond the visible spectrum. The reason that the human eye can see the spectrum is because those specific wavelengths stimulate the retina in the human eye. The human retina can only detect incident light that falls in waves from about 380 to 740 nanometers long, so we can’t see microwave or ultraviolet wavelengths. This also applies to infrared lights which has wavelengths longer than visible and shorter than microwaves, thus being invisible to the human eye.
In conclusion, the human eye can not notice that objects with wavelength not in the range of 380 to 740 nanometers.
Explanation:
Delta E= R[1/n^2 (initial) - 1/n^2 (final) ]
so transition n=3 to n=1 will emit more energy