Answer:
92.04%
Explanation:
Given:
Mass of CO₂ obtained = 53.0 grams
Mass of calcium carbonate heated = 1.31 grams
Now,
the molar mass of the calcium carbonate = 100.08 grams
The number of moles heated in the problem = Mass / Molar mass
= (1.31 grams) / (100.08 grams/moles)
= 0.013088 moles
now,
1 mol of calcium carbonate yields 1 mol of CO₂
thus,
0.013088 moles of calcium carbonate will yield = 0.013088 mol of CO₂
now,
Theoretical mass of 0.013088 moles of CO₂ will be
= Number of moles × Molar mass of CO₂
= 0.013088 × 44 = 0.5758 grams
Thus, the percent yield for this reaction = 
or
the percent yield for this reaction = 
or
the percent yield for this reaction = 92.04%
The answer to this question is B
Answer: silicon Si, Germanium GE
Explanation:
Answer:
The answer is E. All of the statements describe the anomeric carbon.
Explanation:
When a sugar switches from its open form to its ring form, the carbon from the carbonyl (aldehyde if it is an aldose, or a ketone in the case of a ketose) suffers a nucleophilic addition by one of the hydroxyls in the chain, preferably one that will form a 5 or 6 membered ring after the reaction.
As such, the anomeric carbon will have two oxygens attached (The original one and the one that bonded when the ring closed).
It will be chiral, given that it has 4 different groups attached. (-OR,-OH,-H and -R, where R is the carbon chain).
The hydroxyl group can be in any position (Above of below the ring), depending on with side the addition took place. (See attachment)
It is the carbon of the carbonyl in the open-chain form of the sugar, because it is the only one that can react with the Hydroxyls.
Hydrogen bonds<span> hold the paired nitrogenous bases together. Because </span>hydrogen bonds<span> are weak </span>bonds<span>, the two strands of </span>DNA<span> are easily separated a characteristic that is important to </span>DNA's<span> function.</span>Hydrogen bonds<span> form between adenine and thymine and between cytosine and guanine.</span>