Answer: increases
Explanation:
Increase in the temperature of a reaction system will cause the molecules of the reactants to possess higher kinetic energy which they would use to travel more randomly in the system, colliding more frequently with other excited molecules and with the wall of the containing vessel.
Thus, if temperature is increased, the number of collision per second also increases.
Answer:
5.004kg
Explanation:
Combustion of carbon
C+O2=CO2
from the relationship of molar ratio
mass of carbon/molar mass of carbon=volume of CO2 produced\molar vol(22.4 dm3)
mass of carbon =1000kg
atomic mass of carbon =12
volume of CO2 produced=1000×22.4/12
volume of CO2 produced =1866.6dm3
from the combustion reaction equation provided
CO2 (g) + 2NH3 (g) ⟶ CO (NH2 )2 (s) + H2 O(l)
applying the same relationship of molar ratio
no of mole of CO2=no of mole of urea
therefore
vol of CO2\22.4=mass of urea/molar mass of urea
molar mass of urea=60.06g/mol
from the first calculation
vol of CO2=1866.6dm3
mass of urea=1866.6×60.06/22.4
mass of urea=5004.82kg
Answer:
b. unsaturated
.
Explanation:
Hello there!
In this case, according to the given information, it turns out necessary for us to bear to mind the definition of each type of solution:
- Supersaturated solution: comprises a large amount of solute at a temperature at which it will be able to crystalize upon standing.
- Unsaturated solution: is a solution in which a solvent is able to dissolve any more solute at a given temperature.
- Saturated solution can be defined as a solution in which a solvent is not capable of dissolving any more solute at a given temperature.
In such a way, since 20 grams of the solute are less than the solubility, we infer this is b. unsaturated, as 33.3 grams of solute can be further added to the 100 grams of water.
Regards!
Answer:
density=1.43 g/L
Explanation:
Since the density formula is density = mass / volume, we need to find out the mass of the gas and the volume is that of the container.
The mass of the gas is 130.0318 g-129.6375 g=0.3943 g
The gas volume is 276mL*(1L/1000mL) 0.276 L
density = mass / volume=0.3943g/0.276L
density =1.43g/L