Answer:
We're a different species.
Explanation:
Merry Christmas!
Answer:

Explanation:
Given data
length=100mm
Diameter=5mm
Thermal conductivity=5 W/m.K
Power=50 W
Temperature=25°C
The temperature of heater surface follows from the rate equation written as:

Where S can be estimated from the conduction shape factor for a vertical cylinder in semi infinite medium

Substitute the given values
![S=\frac{2\pi (0.1m)}{ln[\frac{4*0.1m}{0.005m} ]}\\ S=0.143m](https://tex.z-dn.net/?f=S%3D%5Cfrac%7B2%5Cpi%20%280.1m%29%7D%7Bln%5B%5Cfrac%7B4%2A0.1m%7D%7B0.005m%7D%20%5D%7D%5C%5C%20S%3D0.143m)
The temperature of heater is then:

The temperature reached by the heater when dissipating 50 W with the surface of the block at a temperature of 25°C.

Answer:
6.53 m/s²
Explanation:
Let m₁ = 5 kg and m₂ = 10 kg. The figure is attached and free body diagrams of the objects are also attached.
Both objects (m₁ and m₂) have the same magnitude of acceleration(a). Let g be the acceleration due to gravity = 9.8 m/s². Hence:
T = m₁a (1)
m₂g - T = m₂a (2)
substituting T = m₁a in equation 2:
m₂g - m₁a = m₂a
m₂a + m₁a = m₂g
a(m₁ + m₂) = m₂g
a = m₂g / (m₁ + m₂)
a = (10 kg * 9.8 m/s²) / (10 kg + 5 kg) = 6.53 m/s²
Both objects have an acceleration of 6.53 m/s²
Answer:
d. 5 ohms
Explanation:
For resistors in parallel, the equivalent resistance is found with:
1/Req = ∑(1/R)
1/R = 1/15 + 1/15 + 1/15
1/R = 3/15
R = 15/3
R = 5