Density = mass / volume
mass = 1.1 g
volume = length of side ^ 3 = [1.2 * 10^-5 km * 100000 cm/km]^3 = [1.2 cm]^3 = 1.728 cm^3
density = 1.1 g / 1.728 cm^3 = 0.64 g / cm^3
The image will form in the vicinity of F. Its nature will be small and inverted
Time = (distance) / (speed)
= (30 km) / (30 m/s)
= (30,000 m) / (30 m/s)
= (30,000 / 30) sec
= 1,000 seconds
= 16 minutes 40 seconds
Answer:
2.23 × 10^6 g of F- must be added to the cylindrical reservoir in order to obtain a drinking water with a concentration of 0.8ppm of F-
Explanation:
Here are the steps of how to arrive at the answer:
The volume of a cylinder = ((pi)D²/4) × H
Where D = diameter of the cylindrical reservoir = 2.02 × 10^2m
H = Height of the reservoir = 87.32m
Therefore volume of cylindrical reservoir = (3.142×202²/4)m² × 87.32m = 2798740.647m³
1ppm = 1g/m³
0.8ppm = 0.8 × 1g/m³
= 0.8g/m³
Therefore to obtain drinking water of concentration 0.8g/m³ in a reservoir of volume 2798740.647m³, F- of mass = 0.8g/m³ × 2798740.647m³ = 2.23 × 10^6 g must be added to the tank.
Thank you for reading.
What happens to end a of the rod when the ball approaches it closely this first time is; It is strongly attracted.
<h3>Electrostatics</h3>
I have attached the image of the rod.
We are told that the ball is much closer to the end of the rod than the length of the rod. Thus, if we point down the rod several times, the distance of approach will experience no electric field and as such the charge on end point A of the rod must be comparable in magnitude to the charge on the ball.
This means that their fields will cancel.
Finally, we can conclude that when a charge is brought close to a conductor, the opposite charges will all navigate to the point that is closest to the charge and as a result, a strong attraction will be created.
This also applies to a strong conducting rod and therefore it is strongly attracted.
Read more about Electrostatics at; brainly.com/question/18108470