Answer:
0.75 NC⁻¹
Explanation:
Electric field intensity ( or strength of the electric field ) is the force per a 1 C charge,
So, Force (F) = Electric field intensity(E) × Charge (q)
F = E×q ⇒ q = F/E
= 4.5×10⁻⁴/6×10⁻⁴ = 0.75 NC⁻¹
According to cool om's law electric fields are generated due to charges. When charges are same there is a repulsive force acted on both charges. When charges are opposite there is a attraction force acted on both charges.
According to cool om's law,
F =G×q1×q2 / r²
F = force exerted of two charges
q1 , q2 = charges
r = distance between two charges
And also Electric field intensity is a vector which has a magnitude and direction both. Direction is depending on a charge and the sign of the charge
Three forces involved in brushing your teeth are first push, then pull, then push.
The Speed In Kilometers per year is 63.072.
The initial mass fraction of the spacecraft that must be burned and ejected to achieve an increase in speed is 0,00219 m/s
<h3>What fraction of the initial mass of the spacecraft?</h3>
Increase the speed: Vf-Vi = 2.2 m/s
Speed of aircraft: Vr = 400 m/s
Speed of ejected products: Vrel = 1000 m/s
The answer is:


So, the initial mass fraction of the spacecraft that must be burned and ejected to achieve an increase in speed is 0,00219 m/s
Learn more about spaceship speed fraction brainly.com/question/28256735
#SPJ4
The distance an object falls from rest through gravity is
D = (1/2) (g) (t²)
Distance = (1/2 acceleration of gravity) x (square of the falling time)
We want to see how the time will be affected
if ' D ' doesn't change but ' g ' does.
So I'm going to start by rearranging the equation
to solve for ' t '. D = (1/2) (g) (t²)
Multiply each side by 2 : 2 D = g t²
Divide each side by ' g ' : 2 D/g = t²
Square root each side: t = √ (2D/g)
Looking at the equation now, we can see what happens to ' t ' when only ' g ' changes:
-- ' g ' is in the denominator; so bigger 'g' ==> shorter 't'
and smaller 'g' ==> longer 't' .--
They don't change by the same factor, because 1/g is inside the square root. So 't' changes the same amount as √1/g does.
Gravity on the surface of the moon is roughly 1/6 the value of gravity on the surface of the Earth.
So we expect ' t ' to increase by √6 = 2.45 times.
It would take the same bottle (2.45 x 4.95) = 12.12 seconds to roll off the same window sill and fall 120 meters down to the surface of the Moon.